Math 304

Linear Algebra

Harold P. Boas
boas@tamu.edu
June 16, 2006

Highlights

From last time:

- matrix representations of linear transformations
- similar matrices

Today:

- applications of the law of cosines

Notation

Some notations for the scalar product $u_{1} v_{1}+u_{2} v_{2}$ of vectors \mathbf{u} and \mathbf{v} are:

- u•v (scalar product = "dot product")
- $\langle\mathbf{u}, \mathbf{v}\rangle$
- $\mathbf{u}^{\top} \mathbf{v}=\left(\begin{array}{ll}u_{1} & u_{2}\end{array}\right)\binom{v_{1}}{v_{2}} \quad$ (our book's notation) In R^{3} or R^{n}, the notation is analogous. One still has the basic formula for the angle θ between two vectors \mathbf{u} and \mathbf{v} :

$$
\cos (\theta)=\frac{\mathbf{u}^{\top} \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}
$$

and the Cauchy-Schwarz inequality: $\left|\mathbf{u}^{\top} \mathbf{v}\right| \leq\|\mathbf{u}\|\|\mathbf{v}\|$.

So $\|\mathbf{u}\|\|\mathbf{v}\| \cos (\theta)=u_{1} v_{1}+u_{2} v_{2} \xlongequal{\text { def }}$ scalar product of \mathbf{u} and \mathbf{v}.

Orthogonality and planes

Example. For which value of the parameter a will the vectors
$\mathbf{u}=\left(\begin{array}{l}a \\ 2 \\ 3\end{array}\right)$ and $\mathbf{v}=\left(\begin{array}{l}4 \\ 5 \\ a\end{array}\right)$ in R^{3} be orthogonal (that is, perpendicular)?
Solution. We want $\theta=90^{\circ}$, so $\cos (\theta)=0$, so the scalar product $\mathbf{u}^{\top} \mathbf{v}=0$. Therefore $4 a+10+3 a=0$, so $a=-10 / 7$.

Example. Write an equation for the plane in R^{3} passing through the origin with normal (perpendicular) vector $\mathbf{N}=(3,-1,7)^{T}$.
Solution. A point (x, y, z) lies on the plane if $(x, y, z)^{T} \perp \mathbf{N}$.
The orthogonality condition gives the equation $3 x-y+7 z=0$.

Projections

Example. Find the projection of the vector $\mathbf{u}=(1,2)^{T}$ onto (the direction of) the vector $\mathbf{v}=(3,1)^{T}$.

Solution. The scalar projection (signed length) equals $\|\mathbf{u}\| \cos (\theta)$, which is the same as the scalar product $\mathbf{u}^{T} \frac{\mathbf{v}}{\|\boldsymbol{v}\|}$. To get the vector projection, multiply this length by the unit vector $\frac{\mathbf{v}}{\|\mathbf{v}\|}$. Thus

$$
(\text { projection of } \mathbf{u} \text { onto } \mathbf{v})=\left(\mathbf{u}^{T} \frac{\mathbf{v}}{\|\mathbf{v}\|}\right) \frac{\mathbf{v}}{\|\mathbf{v}\|}=\left(\frac{3}{2}, \frac{1}{2}\right)^{T} .
$$

Projection and the distance to a plane

Example. Find the distance in R^{3} from the point P with coordinates $(2,1,2)$ to the plane with equation
$4 x+7 y+4 z=5$.
Solution. By inspection, you can see that one particular point on the plane is $(1,-1,2)$. An equivalent equation for the plane is $4(x-1)+7(y+1)+4(z-2)=0$. Thus $\mathbf{N}=(4,7,4)^{T}$ gives a vector normal to the plane.
The vector $\mathbf{v}=(2,1,2)^{T}-(1,-1,2)^{T}=(1,2,0)^{T}$ joins a particular point in the plane to the point P, but not along a perpendicular. You can get the perpendicular distance by taking the length of the projection of \mathbf{v} on the normal \mathbf{N}, namely $\left|\mathbf{v}^{\top} \frac{\mathbf{N}}{\|\mathbf{N}\|}\right|=\frac{4+14+0}{\sqrt{16+49+16}}=2$.

