Math 304 Linear Algebra

Harold P. Boas

boas@tamu.edu

June 16, 2006

Highlights

From last time:

- matrix representations of linear transformations
- similar matrices

Today:

applications of the law of cosines

$$b$$
 c $c^2 = a^2 + b^2 - 2ab\cos(\theta)$
 θ a

Law of cosines for vectors

If
$$\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$
 is a vector in R^2 , then the *length* of \mathbf{u} , written $\|\mathbf{u}\|$,
equals $\sqrt{u_1^2 + u_2^2}$ (Pythagorean theorem). Then:
 (v_1, v_2)
 $\|\mathbf{v} - \mathbf{u}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 - 2\|\mathbf{u}\| \|\mathbf{v}\| \cos(\theta)$
 $= (v_1 - u_1)^2 + (v_2 - u_2)^2$
 $= \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 - 2(u_1v_1 + u_2v_2)$
 θ
 $(0, 0)$

So $\|\mathbf{u}\| \|\mathbf{v}\| \cos(\theta) = u_1 v_1 + u_2 v_2 \stackrel{\text{def}}{=} scalar \text{ product of } \mathbf{u} \text{ and } \mathbf{v}.$

Notation

Some notations for the scalar product $u_1v_1 + u_2v_2$ of vectors **u** and **v** are:

- \blacktriangleright **u** · **v** (scalar product = "dot product")
- $\blacktriangleright \langle \mathbf{u}, \mathbf{v} \rangle$

• $\mathbf{u}^T \mathbf{v} = \begin{pmatrix} u_1 & u_2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$ (our book's notation)

In R^3 or R^n , the notation is analogous. One still has the basic formula for the angle θ between two vectors **u** and **v**:

$$\cos(\theta) = \frac{\mathbf{u}^T \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

and the *Cauchy-Schwarz inequality*: $|\mathbf{u}^T \mathbf{v}| \le ||\mathbf{u}|| ||\mathbf{v}||$.

Orthogonality and planes

Example. For which value of the parameter *a* will the vectors $\mathbf{u} = \begin{pmatrix} a \\ 2 \\ 3 \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} 4 \\ 5 \\ a \end{pmatrix}$ in R^3 be orthogonal (that is, perpendicular)?

Solution. We want $\theta = 90^{\circ}$, so $\cos(\theta) = 0$, so the scalar product $\mathbf{u}^T \mathbf{v} = 0$. Therefore 4a + 10 + 3a = 0, so a = -10/7.

Example. Write an equation for the plane in R^3 passing through the origin with *normal* (perpendicular) vector $\mathbf{N} = (3, -1, 7)^T$.

Solution. A point (x, y, z) lies on the plane if $(x, y, z)^T \perp \mathbf{N}$. The orthogonality condition gives the equation 3x - y + 7z = 0.

Projections

Example. Find the *projection* of the vector $\mathbf{u} = (1,2)^T$ onto (the direction of) the vector $\mathbf{v} = (3,1)^T$.

Solution. The *scalar* projection (signed length) equals $\|\mathbf{u}\| \cos(\theta)$, which is the same as the scalar product $\mathbf{u}^T \frac{\mathbf{v}}{\|\mathbf{v}\|}$. To get the *vector* projection, multiply this length by the *unit* vector $\frac{\mathbf{v}}{\|\mathbf{v}\|}$. Thus

(projection of **u** onto **v**) =
$$\left(\mathbf{u}^T \frac{\mathbf{v}}{\|\mathbf{v}\|}\right) \frac{\mathbf{v}}{\|\mathbf{v}\|} = \left(\frac{3}{2}, \frac{1}{2}\right)^T$$

Projection and the distance to a plane

Example. Find the distance in R^3 from the point *P* with coordinates (2, 1, 2) to the plane with equation 4x + 7y + 4z = 5.

Solution. By inspection, you can see that one particular point on the plane is (1, -1, 2). An equivalent equation for the plane is 4(x - 1) + 7(y + 1) + 4(z - 2) = 0. Thus $\mathbf{N} = (4, 7, 4)^T$ gives a vector normal to the plane. The vector $\mathbf{v} = (2, 1, 2)^T - (1, -1, 2)^T = (1, 2, 0)^T$ joins a

particular point in the plane to the point *P*, but not along a perpendicular. You can get the perpendicular distance by taking the length of the projection of **v** on the normal **N**, namely

$$\left| \mathbf{v}^T \frac{\mathbf{N}}{\|\mathbf{N}\|} \right| = \frac{4+14+0}{\sqrt{16+49+16}} = 2.$$