Math 304

Linear Algebra

Harold P. Boas
boas@tamu.edu
June 19, 2006

Reinterpretation of matrix multiplication

The entries of a matrix product are the scalar products of the rows of the first matrix with the columns of the second matrix:

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)\left(\begin{array}{r}
-2 \\
0 \\
1
\end{array}\right)=\binom{1}{-2}
$$

In particular, the nullspace of a matrix is the set of all vectors orthogonal to the row space.

Notation. If S is a subspace of R^{n}, then the set of all vectors orthogonal to every vector in S is the orthogonal complement of S, written S^{\perp} (pronounced " S perp").

Highlights

From last time:

- scalar product and orthogonality

Today:

- orthogonal subspaces

Rank-nullity revisited

An $m \times n$ matrix A determines a linear transformation from R^{n} into R^{m}.
Notation. $N(A)$ denotes the nullspace, and $R(A)$ denotes the range.

$$
\begin{aligned}
\text { column space } & =R(A) \\
\text { row space } & =R\left(A^{T}\right) \\
\text { nullspace } N(A) & =R\left(A^{T}\right)^{\perp} \\
N\left(A^{T}\right) & =R(A)^{\perp}
\end{aligned}
$$

The rank-nullity theorem restated: $\operatorname{dim} N(A)+\operatorname{dim} R\left(A^{T}\right)=n$.

Orthogonal subspaces in general

If S is any subspace of R^{n}, and S^{\perp} is the orthogonal subspace, then

- $\left(S^{\perp}\right)^{\perp}=S$
- $\operatorname{dim} S+\operatorname{dim} S^{\perp}=n$
- $R^{n}=S \oplus S^{\perp}$

The notation \oplus, called direct sum, means that every vector in R^{n} can be written in a unique way as a sum of an element of S and an element of S^{\perp}.
Application. If A is an $m \times n$ matrix, then

$$
R^{n}=N(A) \oplus R\left(A^{T}\right)
$$

and A maps the row space $R\left(A^{T}\right)$ one-to-one onto the column space $R(A)$.

