Highlights

Math 304 Linear Algebra

Harold P. Boas

boas@tamu.edu

June 19, 2006

From last time:

scalar product and orthogonality

Today:

orthogonal subspaces

Reinterpretation of matrix multiplication

The entries of a matrix product are the *scalar products* of the rows of the first matrix with the columns of the second matrix:

$\begin{pmatrix} 1 & 2 \\ 4 & 5 \end{pmatrix}$	3 6)	$\begin{pmatrix} -2\\ 0\\ 1 \end{pmatrix}$	=	$\begin{pmatrix} 1 \\ -2 \end{pmatrix}$
--	---------	--	---	---

In particular, the nullspace of a matrix is the set of all vectors orthogonal to the row space.

Notation. If *S* is a subspace of \mathbb{R}^n , then the set of all vectors orthogonal to every vector in *S* is the *orthogonal complement* of *S*, written S^{\perp} (pronounced "*S* perp").

Rank-nullity revisited

An $m \times n$ matrix A determines a linear transformation from R^n into R^m .

Notation. N(A) denotes the nullspace, and R(A) denotes the range.

column space =
$$R(A)$$

row space = $R(A^T)$
nullspace $N(A) = R(A^T)^{\perp}$
 $N(A^T) = R(A)^{\perp}$

The rank-nullity theorem restated: dim N(A) + dim $R(A^T) = n$.

Orthogonal subspaces in general

If S is any subspace of \mathbb{R}^n , and \mathbb{S}^{\perp} is the orthogonal subspace, then

- ► $(S^{\perp})^{\perp} = S$
- ► dim S + dim S^{\perp} = n
- ► $R^n = S \oplus S^{\perp}$

The notation \oplus , called *direct sum*, means that every vector in \mathbb{R}^n can be written in a *unique* way as a sum of an element of S and an element of S^{\perp} .

Application. If *A* is an $m \times n$ matrix, then

$$R^n = N(A) \oplus R(A^T)$$

and A maps the row space $R(A^T)$ one-to-one onto the column space R(A).