Highlights

Math 304
Linear Algebra

Harold P. Boas
boas@tamu.edu
June 20, 2006

Solving unsolvable problems

Recall that the linear system $A \mathbf{x}=\mathbf{b}$ is solvable (that is, consistent) if and only if the vector \mathbf{b} belongs to the column space of the matrix A (that is, the range of A).
If the system is unsolvable (that is, inconsistent), we might ask for a vector \mathbf{x} that minimizes the length of the difference vector $A \mathbf{x}-\mathbf{b}$. Such an \mathbf{x} is a least squares solution.
Reinterpretation: the vector $\mathbf{A x}-\mathbf{b}$ should be orthogonal to $R(A)$.
We know from last time that $R(A)^{\perp}=N\left(A^{T}\right)$, so we want $A^{T}(A \mathbf{x}-\mathbf{b})=\mathbf{0}$.
Thus we have a reformulation of the least squares problem:

$$
A^{T} A \mathbf{x}=A^{T} \mathbf{b}
$$

From last time:

- orthogonal subspaces

Today:

- least squares problems

Example
Find the line of the form $y=a+b x$ that best fits the data:

x	0	1	2
y	1	2	5

[answer: $y=\frac{2}{3}+2 x$]
Solution. We seek a least-squares solution of the system:

$$
\begin{aligned}
& a+b \times 0=1 \\
& a+b \times 1=2 \quad \text { or } \\
& a+b \times 2=5
\end{aligned}
$$

Multiplying by the transpose $\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 2\end{array}\right)$ gives the system:

$$
\left(\begin{array}{ll}
3 & 3 \\
3 & 5
\end{array}\right)\binom{a}{b}=\binom{8}{12}
$$

Solve either by row reduction or by multiplying by $\left(\begin{array}{ll}3 & 3 \\ 3 & 5\end{array}\right)^{-1}$.

- $A^{\top} A$ is always a symmetric square matrix.
- $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$ is always a consistent system.
- There is a unique least squares solution if and only if $A^{T} A$ is an invertible matrix.
- There is a unique least squares solution if and only if the columns of A are linearly independent (that is, A is an $m \times n$ matrix of rank n).

