Highlights

Math 304 Linear Algebra

Harold P. Boas

boas@tamu.edu

June 20, 2006

From last time:

orthogonal subspaces

Today:

least squares problems

Solving unsolvable problems

Recall that the linear system $A\mathbf{x} = \mathbf{b}$ is solvable (that is, consistent) if and only if the vector **b** belongs to the column space of the matrix *A* (that is, the range of *A*).

If the system is unsolvable (that is, inconsistent), we might ask for a vector \mathbf{x} that *minimizes* the length of the difference vector $A\mathbf{x} - \mathbf{b}$. Such an \mathbf{x} is a *least squares solution*.

Reinterpretation: the vector $A\mathbf{x} - \mathbf{b}$ should be orthogonal to R(A).

We know from last time that $R(A)^{\perp} = N(A^{T})$, so we want $A^{T}(A\mathbf{x} - \mathbf{b}) = \mathbf{0}$.

Thus we have a reformulation of the least squares problem:

$$A^T A \mathbf{x} = A^T \mathbf{b}.$$

Example

Find the line of the form y = a + bx that best fits the data:

x
 0
 1
 2

 y
 1
 2
 5

[answer:
$$y = \frac{2}{3} + 2x$$
]

Solution. We seek a least-squares solution of the system:

$$a + b \times 0 = 1$$

$$a + b \times 1 = 2$$
 or
$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix}$$

Multiplying by the transpose $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix}$ gives the system:

 $\begin{pmatrix} 3 & 3 \\ 3 & 5 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 8 \\ 12 \end{pmatrix}.$

Solve either by row reduction or by multiplying by $\begin{pmatrix} 3 & 3 \\ 3 & 5 \end{pmatrix}^{-1}$.

Remarks on $A^T A \mathbf{x} = A^T \mathbf{b}$

- $A^T A$ is always a *symmetric* square matrix.
- $A^T A \mathbf{x} = A^T \mathbf{b}$ is always a *consistent* system.
- There is a *unique* least squares solution if and only if A^TA is an invertible matrix.
- There is a *unique* least squares solution if and only if the columns of A are linearly independent (that is, A is an m × n matrix of rank n).