

Inner product = generalization of scalar product

In R^{2}, the standard scalar product of vectors $\binom{x_{1}}{x_{2}}$ and $\binom{y_{1}}{y_{2}}$ is $x_{1} y_{1}+x_{2} y_{2}$.
In an anisotropic problem, one might want to use a weighted scalar product, such as $2 x_{1} y_{1}+5 x_{2} y_{2}$. This will change the notions of length and angle.

In general, an inner product $\langle\mathbf{x}, \mathbf{y}\rangle$ must satisfy three properties:

- symmetry: $\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle$
- linearity: $\langle\mathbf{x}+\mathbf{y}, \mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{z}\rangle+\langle\mathbf{y}, \mathbf{z}\rangle$ and $\langle c \mathbf{x}, \mathbf{y}\rangle=c\langle\mathbf{x}, \mathbf{y}\rangle$ for every scalar c
- positivity: $\langle\mathbf{x}, \mathbf{x}\rangle$ is positive unless $\mathbf{x}=\mathbf{0}$.

The norm associated to an inner product is given by $\|\mathbf{x}\|=\sqrt{\langle\mathbf{x}, \mathbf{x}\rangle}$.

Highlights

From last time:

- To find the least-squares solution to $A \mathbf{x}=\mathbf{b}$, solve the related problem $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$.
Today:
- inner products and norms

Examples of inner products

- The standard scalar product on R^{3} is the basic example of an inner product.
- On a vector space of functions, a common inner product is integration: $\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x$.
Example. Show that for the inner product corresponding to integration over the interval $[-1,1]$, the Legendre polynomials $1, x$, and $\frac{1}{2}\left(3 x^{2}-1\right)$ are orthogonal to each other.
Solution. Show that the inner products are equal to 0 .
$\langle 1, x\rangle=\int_{-1}^{1} x d x=0$ by symmetry.
$\left\langle 1, \frac{1}{2}\left(3 x^{2}-1\right)\right\rangle=\int_{-1}^{1} \frac{1}{2}\left(3 x^{2}-1\right) d x=\frac{1}{2}\left[x^{3}-x\right]_{-1}^{1}=0$.
$\left\langle x, \frac{1}{2}\left(3 x^{2}-1\right)\right\rangle=\int_{-1}^{1} \frac{1}{2}\left(3 x^{3}-x\right) d x=0$ by symmetry.

More examples in function spaces

Example. For the inner product $\langle p, q\rangle=\int_{-1}^{1} p(x) q(x) d x$, find the norm of the function $p(x)=x$.
Solution. $\|x\|=\sqrt{\langle x, x\rangle}=\sqrt{\int_{-1}^{1} x^{2} d x}=\sqrt{2 / 3}$.
Example. For the same inner product, find the projection of the function $p(x)=1$ on the function $q(x)=3 x^{2}$.
Solution. We want $\left\langle p, \frac{q}{\|q\|}\right\rangle \frac{q}{\|q\|}$ or $\frac{\langle p, q\rangle}{\langle q, q\rangle} q$, which equals

$$
\frac{\int_{-1}^{1} 3 x^{2} d x}{\int_{-1}^{1} 9 x^{4} d x} q(x)=\frac{2}{18 / 5} 3 x^{2}=\frac{5}{3} x^{2}
$$

Normed linear spaces

Without an inner product, we cannot talk about angles or projections or the Pythagorean law or the Cauchy-Schwarz inequality, but we can still talk about distance if our vector space has a norm.

A norm must satisfy three properties:

- scaling: $\|c \mathbf{v}\|=|c|\|\mathbf{v}\|$ for every scalar c
- triangle inequality: $\|\mathbf{v}+\mathbf{w}\| \leq\|\mathbf{v}\|+\|\mathbf{w}\|$
- positivity: $\|\mathbf{v}\|$ is positive unless $\mathbf{v}=\mathbf{0}$

Examples of norms on R^{2}

- the usual Euclidean norm: $\left\|\left(x_{1}, x_{2}\right)^{T}\right\|_{2}=\sqrt{x_{1}^{2}+x_{2}^{2}}$
- the taxicab norm: $\left\|\left(x_{1}, x_{2}\right)^{T}\right\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|$
- the maximum norm: $\left\|\left(x_{1}, x_{2}\right)^{T}\right\|_{\infty}=\max \left(\left|x_{1}\right|,\left|x_{2}\right|\right)$

