Math 304

Linear Algebra

Harold P. Boas

boas@tamu.edu

June 22, 2006

Highlights

From last time:

inner products and norms

Today:

orthonormal sets

Example in R³

Let
$$\mathbf{u}_1=\begin{pmatrix} \frac{1}{\sqrt{2}}\\0\\-\frac{1}{\sqrt{2}} \end{pmatrix}$$
, $\mathbf{u}_2=\begin{pmatrix} \frac{1}{\sqrt{3}}\\-\frac{1}{\sqrt{3}}\\\frac{1}{\sqrt{3}} \end{pmatrix}$, and $\mathbf{u}_3=\begin{pmatrix} \frac{1}{\sqrt{6}}\\\frac{2}{\sqrt{6}}\\\frac{1}{\sqrt{6}} \end{pmatrix}$.

These vectors form an *orthonormal set*: each vector is orthogonal to the others, and each vector has norm equal to 1.

The matrix U whose columns are \mathbf{u}_1 , \mathbf{u}_2 , and \mathbf{u}_3 is called an *orthogonal matrix*. Notice that $U^TU = I$ (the identity matrix), so $U^T = U^{-1}$. This property characterizes orthogonal matrices.

An orthogonal matrix preserves the scalar product: namely, $\langle Ux, Uy \rangle = \langle x, y \rangle$. Here is why:

$$\langle U\mathbf{x}, U\mathbf{y} \rangle = (U\mathbf{x})^T U\mathbf{y} = \mathbf{x}^T U^T U\mathbf{y} = \mathbf{x}^T \mathbf{y} = \langle \mathbf{x}, \mathbf{y} \rangle.$$

Therefore an orthogonal matrix also preserves the norm: $\|U\mathbf{x}\| = \|\mathbf{x}\|$.

Example continued

$$\text{Let } \textbf{y} = 2 \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ -\frac{1}{\sqrt{2}} \end{pmatrix} - 3 \begin{pmatrix} -\frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{pmatrix} + 4 \begin{pmatrix} \frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{pmatrix} = 2\textbf{u}_1 - 3\textbf{u}_2 + 4\textbf{u}_3.$$

Problem. Determine ||y||.

Solution. Since $\mathbf{y} = U \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix}$, and since multiplication by an

orthogonal matrix preserves the norm, $\parallel / 2 \rangle \parallel$

$$\|\mathbf{y}\| = \left\| \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix} \right\| = \sqrt{4+9+16} = \sqrt{29}.$$
In general, $\|c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + c_3\mathbf{u}_3\|^2 = c_1^2 + c_2^2 + c_3^2$.

The analogous statement for an arbitrary orthonormal set is *Parseval's formula*.

More on the example: Fourier coefficients

Problem. Express the vector $\mathbf{v} = (1, 2, 3)^T$ as a linear combination of \mathbf{u}_1 , \mathbf{u}_2 , and \mathbf{u}_3 . In other words, find coefficients c_1 , c_2 , and c_3 such that $\mathbf{v} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + c_3 \mathbf{u}_3$ or

$$egin{pmatrix} egin{pmatrix} 1 \ 2 \ 3 \end{pmatrix} = c_1 egin{pmatrix} rac{1}{\sqrt{2}} \ 0 \ -rac{1}{\sqrt{2}} \end{pmatrix} + c_2 egin{pmatrix} rac{1}{\sqrt{3}} \ -rac{1}{\sqrt{3}} \ rac{1}{\sqrt{3}} \end{pmatrix} + c_3 egin{pmatrix} rac{1}{\sqrt{6}} \ rac{2}{\sqrt{6}} \ rac{1}{\sqrt{6}} \end{pmatrix}.$$

Solution. No row reduction necessary! Take the inner product with \mathbf{u}_1 : thus $\langle \mathbf{v}, \mathbf{u}_1 \rangle = \langle c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + c_3 \mathbf{u}_3, \mathbf{u}_1 \rangle = c_1$ by orthonormality, so $c_1 = -2/\sqrt{2}$. Similarly, $c_2 = \langle \mathbf{v}, \mathbf{u}_2 \rangle = 2/\sqrt{3}$, and $c_3 = \langle \mathbf{v}, \mathbf{u}_3 \rangle = 8/\sqrt{6}$.

In general, any vector ${\bf v}$ can be represented in terms of an orthonormal basis ${\bf u}_1,\,{\bf u}_2,$ and ${\bf u}_3$ via

$$\mathbf{v} = \langle \mathbf{v}, \mathbf{u}_1 \rangle \mathbf{u}_1 + \langle \mathbf{v}, \mathbf{u}_2 \rangle \mathbf{u}_2 + \langle \mathbf{v}, \mathbf{u}_3 \rangle \mathbf{u}_3.$$

Projection and approximation

Problem. Find the projection of the vector $\mathbf{v} = (2, 1, 1)^T$ onto the plane spanned by \mathbf{u}_1 and \mathbf{u}_2 .

Solution. We can write

$$\mathbf{v} = \langle \mathbf{v}, \mathbf{u}_1 \rangle \mathbf{u}_1 + \langle \mathbf{v}, \mathbf{u}_2 \rangle \mathbf{u}_2 + \langle \mathbf{v}, \mathbf{u}_3 \rangle \mathbf{u}_3$$

but \mathbf{u}_3 is orthogonal to the plane, so the projection equals

$$\langle \mathbf{v}, \mathbf{u}_1 \rangle \mathbf{u}_1 + \langle \mathbf{v}, \mathbf{u}_2 \rangle \mathbf{u}_2 = \begin{pmatrix} \frac{1}{2} \\ 0 \\ -\frac{1}{2} \end{pmatrix} + \begin{pmatrix} -\frac{2}{3} \\ \frac{2}{3} \end{pmatrix} = \begin{pmatrix} \frac{7}{6} \\ -\frac{2}{3} \\ \frac{1}{6} \end{pmatrix}.$$