Highlights

Math 304
Linear Algebra

Harold P. Boas
boas@tamu.edu
June 26, 2006

Example
The matrix $A=\left(\begin{array}{ll}2 & 1 \\ 0 & 3\end{array}\right)$ defines a linear transformation of R^{2} that is easy to understand. The transformation stretches the vector $\mathbf{u}_{1}=\binom{1}{0}$ by a factor of 2 and stretches the vector $\mathbf{u}_{2}=\binom{1}{1}$ by a factor of 3.
${ }^{(3,3)}$ The vectors \mathbf{u}_{1} and \mathbf{u}_{2} are called eigenvectors, and the scale factors 2 and 3 are the corresponding eigenvalues.

The transformation is particularly simple to describe in the basis [$\mathbf{u}_{1}, \mathbf{u}_{2}$]: namely, the matrix $U^{-1} A U$ is the diagonal matrix $\left(\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right)$.

From last time:

- Gram-Schmidt orthonormalization process and $Q R$ factorization
Today:
- eigenvalues and eigenvectors

Computing eigenvectors
Example. The matrix $A=\left(\begin{array}{rrr}12 & 4 & -5 \\ -8 & 0 & 5 \\ 10 & 4 & -3\end{array}\right)$ has 3 as one of its eigenvalues. Find a corresponding eigenvector.

Solution. We seek a vector \mathbf{v} such that $A \mathbf{v}=3 \mathbf{v}$. Equivalently, \mathbf{v} should be in the nullspace of the matrix $A-3 I$ ($I=$ identity). Find the nullspace by row reduction:

$$
\begin{aligned}
& \left(\begin{array}{rrr|r}
9 & 4 & -5 & 0 \\
-8 & -3 & 5 & 0 \\
10 & 4 & -6 & 0
\end{array}\right) \xrightarrow{R_{1} \rightarrow R_{1}+R_{2}}\left(\begin{array}{rrr|r}
1 & 1 & 0 & 0 \\
-8 & -3 & 5 & 0 \\
10 & 4 & -6 & 0
\end{array}\right) \\
& R_{2}+8 R_{1} \\
& R_{2}+\left(\begin{array}{rrr|r}
1 & 1 & 0 & 0 \\
0 & 5 & 5 & 0 \\
0 & -6 & -6 & 0
\end{array}\right) \xrightarrow[\text { steps }]{\text { three }}\left(\begin{array}{rrr|r}
1 & 0 & -1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Thus $\mathbf{v}=(1,-1,1)^{T}$ is an eigenvector with eigenvalue 3 .

Computing eigenvalues

Example. The matrix $A=\left(\begin{array}{rrr}12 & 4 & -5 \\ -8 & 0 & 5 \\ 10 & 4 & -3\end{array}\right)$ has other
eigenvalues besides the number 3 . Find them.
Solution. The condition for a number λ to be an eigenvalue of A is that the matrix $A-\lambda /$ has a non-trivial nullspace.
Equivalently, $\operatorname{det}(A-\lambda I)=0$, the characteristic equation:

$$
\begin{aligned}
& 0=\left|\begin{array}{ccc}
12-\lambda & 4 & -5 \\
-8 & 0-\lambda & 5 \\
10 & 4 & -3-\lambda
\end{array}\right| \stackrel{R_{1}+R_{2}}{=}\left|\begin{array}{ccc}
4-\lambda & 4-\lambda & 0 \\
-8 & -\lambda & 5 \\
10 & 4 & -3-\lambda
\end{array}\right| \\
& C_{2}=C_{1}\left|\begin{array}{ccc}
4-\lambda & 0 & 0 \\
-8 & 8-\lambda & 5 \\
10 & -6 & -3-\lambda
\end{array}\right|=(4-\lambda)\left|\begin{array}{cc}
8-\lambda & 5 \\
-6 & -3-\lambda
\end{array}\right| \\
&=(4-\lambda)\left(\lambda^{2}-5 \lambda+6\right)=(4-\lambda)(\lambda-3)(\lambda-2) .
\end{aligned}
$$

Therefore the eigenvalues of A are 4, 3, and 2 .

Eigenvalues and similarity

If A and B are similar matrices ($B=S^{-1} A S$), then A and B have the same eigenvalues (but not the same eigenvectors). Here's why. If $A \mathbf{v}=\lambda \mathbf{v}$, then $B \mathbf{w}=\lambda \mathbf{w}$ with $\mathbf{w}=S^{-1} \mathbf{v}$. In fact, $B \mathbf{w}=\left(S^{-1} A S\right)\left(S^{-1} \mathbf{v}\right)=S^{-1} A \mathbf{v}=S^{-1} \lambda \mathbf{v}=\lambda \mathbf{w}$.
Example. Since the matrix $A=\left(\begin{array}{rrr}12 & 4 & -5 \\ -8 & 0 & 5 \\ 10 & 4 & -3\end{array}\right)$ has
eigenvalues 4,3 , and 2 , the matrix A is similar to a diagonal
matrix $\left(\begin{array}{lll}4 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2\end{array}\right)$. Similar matrices have equal determinants,
so $\operatorname{det}(A)=24$ (the product of the eigenvalues).
Similar matrices have equal traces too, and indeed $12+0-3=4+3+2$.

