Highlights

Math 304
Linear Algebra

Harold P. Boas
boas@tamu.edu
June 27, 2006

Reminders on first-order differential equations

Example. Solve the differential equation $\frac{d y}{d t}=3 y$ or $y^{\prime}=3 y$ with the initial condition $y(0)=4$.
Solution. We know a function whose derivative is 3 times the function: namely, $y(t)=e^{3 t}$, or more generally $y(t)=c e^{3 t}$ for an arbitrary constant c.
Thus the general solution to $y^{\prime}=3 y$ is $y(t)=c e^{3 t}$.
The particular solution satisfying the initial condition $y(0)=4$ is $y(t)=4 e^{3 t}$.

From last time:

- eigenvalues and eigenvectors

Today:

- application of eigenvectors to systems of differential equations

Linear systems of differential equations
Exercise 1(b), page 323
Find the general solution to the system $\left\{\begin{array}{l}y_{1}^{\prime}=2 y_{1}+4 y_{2} \\ y_{2}^{\prime}=-y_{1}-3 y_{2}\end{array}\right.$
Solution. Write $\mathbf{y}=\binom{y_{1}}{y_{2}}$ and $A=\left(\begin{array}{rr}2 & 4 \\ -1 & -3\end{array}\right)$. Then the system says $\mathbf{y}^{\prime}=A \mathbf{y}$.
Observe that if \mathbf{v} is an eigenvector of A with eigenvalue λ, then $\mathbf{y}(t)=e^{\lambda t} \mathbf{v}$ is a solution of the differential equation. Since A has eigenvalues 1 and -2 with corresponding eigenvectors $\binom{4}{-1}$ and $\binom{1}{-1}$, the general solution is the superposition

$$
\mathbf{y}(t)=c_{1} e^{t}\binom{4}{-1}+c_{2} e^{-2 t}\binom{1}{-1}, \text { or }\left\{\begin{array}{l}
y_{1}(t)=4 c_{1} e^{t}+c_{2} e^{-2 t} \\
y_{2}(t)=-c_{1} e^{t}-c_{2} e^{-2 t}
\end{array}\right.
$$

An initial condition would let you determine c_{1} and c_{2}.

Euler's formula

The complex exponential function is related to the trigonometric functions via Euler's formula:

$$
e^{i t}=\cos (t)+i \sin (t)
$$

For example, $e^{i \pi}=-1, e^{i \pi / 4}=(1+i) / \sqrt{2}$, and $e^{(2+3 i) t}=e^{2 t}(\cos (3 t)+i \sin (3 t))$.

Higher-order systems

Example: exercise 5(b), page 324
Solve $\left\{\begin{array}{l}y_{1}^{\prime \prime}=2 y_{1}+y_{2}^{\prime} \\ y_{2}^{\prime \prime}=2 y_{2}+y_{1}^{\prime} .\end{array}\right.$
Solution strategy. We know how to handle systems of first-order differential equations, so introduce two new variables y_{3} and y_{4} via $y_{1}^{\prime}=y_{3}$ and $y_{2}^{\prime}=y_{4}$. The system becomes

$$
\begin{aligned}
& y_{1}^{\prime}=y_{3} \\
& y_{2}^{\prime}=y_{4} \\
& y_{3}^{\prime}=2 y_{1}+y_{4} \\
& y_{4}^{\prime}=2 y_{2}+y_{3}
\end{aligned} \quad \text { or } \quad \mathbf{y}^{\prime}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
2 & 0 & 0 & 1 \\
0 & 2 & 1 & 0
\end{array}\right) \mathbf{y}
$$

Proceed as before: find the eigenvalues [± 1 and ± 2], the corresponding eigenvectors, and write the general solution [with four arbitrary constants c_{1}, c_{2}, c_{3}, and c_{4}].

Differential equations with complex eigenvalues

Example: exercise 1 (d), page 323
Solve $\left\{\begin{array}{l}y_{1}^{\prime}=y_{1}-y_{2} \\ y_{2}^{\prime}=y_{1}+y_{2}\end{array} \quad\right.$ or $\quad \mathbf{y}^{\prime}=A \mathbf{y}$ with $A=\left(\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right)$.
The characteristic equation is $\lambda^{2}-2 \lambda+2=0$. By the quadratic formula, $\lambda=\frac{2 \pm \sqrt{4-8}}{2}=1 \pm i$. An eigenvector corresponding to eigenvalue $1+i$ is $\binom{i}{1}$. One complex-valued solution is

$$
\mathbf{y}(t)=e^{(1+i) t}\binom{i}{1}=\binom{e^{t}(-\sin (t)+i \cos (t))}{e^{t}(\cos (t)+i \sin (t))}
$$

Because the differential equation is real-valued, both the real and imaginary parts of the complex solution are real solutions. The general (real) solution is therefore

$$
\mathbf{y}(t)=c_{1} e^{t}\binom{-\sin (t)}{\cos (t)}+c_{2} e^{t}\binom{\cos (t)}{\sin (t)} .
$$

