Highlights

Math 304
Linear Algebra

Harold P. Boas
boas@tamu.edu
June 28, 2006

From last time:

- application of eigenvectors to systems of differential equations
Today:
- diagonalization of matrices and applications

When is a matrix diagonal?

Suppose a linear operator $L$ on $R^{3}$ is represented in a basis [ $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ ] by the matrix $\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5\end{array}\right)$.
This means that $L \mathbf{u}_{1}=2 \mathbf{u}_{1}$ and $L \mathbf{u}_{2}=3 \mathbf{u}_{2}$ and $L \mathbf{u}_{3}=5 \mathbf{u}_{3}$. In other words, the basis vectors are eigenvectors of the operator $L$.
A square matrix $A$ is diagonalizable if the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ can be represented in some basis by a diagonal matrix; in other words, if there is a basis consisting of eigenvectors of $A$; equivalently, if there is an invertible matrix $S$ such that $S^{-1} A S$ is a diagonal matrix.

Example: exercise 1(b), p. 340

Diagonalize the matrix $A=\left(\begin{array}{rr}5 & 6 \\ -2 & -2\end{array}\right)$. In other words, find an invertible matrix $S$ and a diagonal matrix $D$ such that $S^{-1} A S=D$ or $A=S D S^{-1}$.
Solution. First find the eigenvalues and eigenvectors of $A$. The vector $\binom{3}{-2}$ is an eigenvector with eigenvalue 1 , and the vector $\binom{2}{-1}$ is an eigenvector with eigenvalue 2. The matrix $S=\left(\begin{array}{rr}3 & 2 \\ -2 & -1\end{array}\right)$ is the transition matrix from the eigenvector basis to the standard basis, and the matrix $S^{-1} A S$ is the diagonal matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$.

## Continuation

If $A=\left(\begin{array}{rr}5 & 6 \\ -2 & -2\end{array}\right)$, find $A^{10}$.
Solution. Since $S^{-1} A S=D=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$, and $D^{10}=\left(\begin{array}{cc}1 & 0 \\ 0 & 2^{10}\end{array}\right)$, we have
$A^{10}=S D^{10} S^{-1}=\left(\begin{array}{rr}3 & 2 \\ -2 & -1\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ 0 & 2^{10}\end{array}\right)\left(\begin{array}{rr}-1 & -2 \\ 2 & 3\end{array}\right)=$
$\left(\begin{array}{rr}-3+2^{12} & -6+3 \times 2^{11} \\ 2-2^{11} & 4-3 \times 2^{10}\end{array}\right)$.
More. Since the exponential function is given by a power series $\left(e^{x}=1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\cdots+\frac{1}{n!} x^{n}+\cdots\right)$, we also have $e^{A}:=I+A+\frac{1}{2!} A^{2}+\cdots=S e^{D} S^{-1}=$
$\left(\begin{array}{rr}3 & 2 \\ -2 & -1\end{array}\right)\left(\begin{array}{ll}e & 0 \\ 0 & e^{2}\end{array}\right)\left(\begin{array}{rr}-1 & -2 \\ 2 & 3\end{array}\right)=$
$\left(\begin{array}{rr}-3 e+4 e^{2} & -6 e+6 e^{2} \\ 2 e-2 e^{2} & 4 e-3 e^{2}\end{array}\right)$.

## Application to differential equations

We have two ways to solve the system of differential equations $\mathbf{y}^{\prime}=\left(\begin{array}{rr}5 & 6 \\ -2 & -2\end{array}\right) \mathbf{y}$.
From yesterday, we can write the general solution as
$\mathbf{y}(t)=c_{1} e^{t}\binom{3}{-2}+c_{2} e^{2 t}\binom{2}{-1}$.
Alternatively, we can write the general solution as
$\mathbf{y}(t)=e^{t A}\binom{c_{1}}{c_{2}}=S e^{t D} S^{-1}\binom{c_{1}}{c_{2}}=$
$\left(\begin{array}{rr}-3 e^{t}+4 e^{2 t} & -6 e^{t}+6 e^{2 t} \\ 2 e^{t}-2 e^{2 t} & 4 e^{t}-3 e^{2 t}\end{array}\right)\binom{c_{1}}{c_{2}}$.
In the second form, $\binom{c_{1}}{c_{2}}=\binom{y_{1}(0)}{y_{2}(0)}$.

