Write your name: \qquad (2 points).
In problems $\mathbf{1 - 5}$, circle the correct answer. (5 points each)

1. On the vector space of polynomials, differentiation is a linear operator.
True False
2. If the linear system $A \mathbf{x}=\mathbf{b}$ is consistent, then the vector \mathbf{b} must be in the space $N(A)^{\perp}$.

True False
3. The matrix $\left(\begin{array}{rr}0 & -1 \\ -1 & 0\end{array}\right)$ is the matrix representation (with respect to the standard basis) of the linear operator that reflects each vector \mathbf{x} in R^{2} about the x_{2} axis and then rotates it 90° in the counterclockwise direction. True False
4. The two functions $\sqrt{3} x$ and $\sqrt{5}\left(4 x^{2}-3 x\right)$ are an orthonormal set in the space $C[0,1]$ with inner product $\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x$.
True False
5. Every invertible matrix is diagonalizable. True False

In problems 6-9, fill in the blanks. (7 points per problem)

7. The angle between the vectors $\left(\begin{array}{r}2 \\ -1 \\ -2\end{array}\right)$ and $\left(\begin{array}{c}1 \\ 1 \\ \square\end{array}\right)$ in R^{3} is 45°.
8. The eigenvalues of the matrix $\left(\begin{array}{cc}2 & 4 \\ 3 & \square\end{array}\right)$ are 0 and \square.
9. If a 7×11 matrix A has a nullspace of dimension 5 , then the nullspace of the transpose matrix A^{T} has dimension \qquad \square.

Linear Algebra

In problems 10-12, show your work and explain your method. Continue on the back if you need more space. (15 points each)
10. Suppose $\mathbf{u}_{1}=\binom{3}{7}, \mathbf{u}_{2}=\binom{2}{5}, \mathbf{v}_{1}=\binom{1}{3}$, and $\mathbf{v}_{2}=\binom{3}{8}$. If $\mathbf{x}=$ $4 \mathbf{u}_{1}+3 \mathbf{u}_{2}$, find numbers c_{1} and c_{2} such that $\mathbf{x}=c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{2}$.
11. Find a least-squares solution of the system $\left(\begin{array}{rr}1 & 2 \\ -1 & 3 \\ 1 & 1\end{array}\right)\binom{x_{1}}{x_{2}}=\left(\begin{array}{l}3 \\ 0 \\ 4\end{array}\right)$.
12. The matrices $\left(\begin{array}{rrr}2 & a & -9 \\ -4 & 2 & -6 \\ -2 & -5 & 3\end{array}\right)$ and $\left(\begin{array}{lll}3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 4\end{array}\right)$ are similar. Find the value of the number a.

