
Math 304 Examination 2

Linear Algebra
Summer 2006

Write your name: Answer Key (2 points).

In problems 1–5, circle the correct answer. (5 points each)

1. On the vector space of polynomials, differentiation is a linear operator.
True False

Solution. True: the derivative of a sum is the sum of the derivatives,
and the derivative of a scalar times a polynomial is the scalar times the
derivative of the polynomial.

2. If the linear system Ax = b is consistent, then the vector b must be in
the space N(A)⊥. True False

Solution. False. If A is an m× n matrix, then b is in Rm and N(A)⊥

is a subspace of Rn, so the statement does not even make sense when
m 6= n. What is true is that b must be in the range R(A), and that
space is equal to the space N(AT )⊥ (not N(A)⊥).

3. The matrix

(

0 −1
−1 0

)

is the matrix representation (with respect to

the standard basis) of the linear operator that reflects each vector x

in R2 about the x2 axis and then rotates it 90◦ in the counterclockwise
direction. True False

Solution. True: the image of the first basis vector

(

1
0

)

is

(

0
−1

)

, the

first column of the matrix, and the image of the second basis vector
(

0
1

)

is

(

−1
0

)

, the second column of the matrix.

4. The two functions
√

3 x and
√

5 (4x2 − 3x) are an orthonormal set in

the space C[0, 1] with inner product 〈f, g〉 =
∫

1

0
f(x)g(x) dx.

True False

Solution. True. The first function is normalized since
∫

1

0
(
√

3 x)2 dx =
∫

1

0
3x2 dx = [x3]

1

0
= 1. The second function is normalized because

∫

1

0
(
√

5 (4x2−3x))2 dx =
∫

1

0
5(16x4−24x3 +9x2) dx = 5(16

5
−6+3) = 1.

The two functions are orthogonal because
∫

1

0
(
√

3x)(
√

5 (4x2−3x)) dx =√
15

∫

1

0
(4x3 − 3x2) dx = 0.
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5. Every invertible matrix is diagonalizable. True False

Solution. False. For example, the matrix

(

1 1
0 1

)

is invertible but

cannot be diagonalized because the only eigenvalue is 1, and the corre-
sponding eigenspace is spanned by the single eigenvector (1, 0)T . The
matrix does not admit a basis of eigenvectors.

In problems 6–9, fill in the blanks. (7 points per problem)

6. The matrix



















1√
2

1√
2

0

−1

2

1

2

1√
2

1

2
−1

2

1√
2



















is an orthogonal matrix.

7. The angle between the vectors





2
−1
−2



 and





1
1

−4



 in R3 is 45◦.

8. The eigenvalues of the matrix

(

2 4

3 6

)

are 0 and 8 .

9. If a 7× 11 matrix A has a nullspace of dimension 5, then the nullspace
of the transpose matrix AT has dimension 1 .

In problems 10–12, show your work and explain your method. Continue
on the back if you need more space. (15 points each)

10. Suppose u1 =

(

3
7

)

, u2 =

(

2
5

)

, v1 =

(

1
3

)

, and v2 =

(

3
8

)

. If x =

4u1 + 3u2, find numbers c1 and c2 such that x = c1v1 + c2v2.

Solution. This is a problem about change of basis, but it can be solved
from first principles. The problem amounts to solving the system

(

1 3
3 8

) (

c1

c2

)

=

(

3 2
7 5

) (

4
3

)

.
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You can multiply out the right-hand side and solve by row reduction, or
alternatively multiply by an inverse matrix (this amounts to the change
of basis formula) to get

(

c1

c2

)

=

(

1 3
3 8

)−1 (

3 2
7 5

) (

4
3

)

=

(

−15
11

)

.

11. Find a least-squares solution of the system





1 2
−1 3

1 1





(

x1

x2

)

=





3
0
4



.

Solution. The associated least-squares problem is

(

1 −1 1
2 3 1

)





1 2
−1 3

1 1





(

x1

x2

)

=

(

1 −1 1
2 3 1

)





3
0
4



 , or

(

3 0
0 14

) (

x1

x2

)

=

(

7
10

)

.

Therefore x1 = 7/3 and x2 = 10/14 = 5/7.

12. The matrices





2 a −9
−4 2 −6
−2 −5 3



 and





3 0 0
0 0 0
0 0 4



 are similar. Find the

value of the number a.

Solution. There are several ways to see that a = 11. One way is to
observe that similar matrices have equal determinants: set the deter-
minant of the first matrix equal to 0 and solve for a. Alternatively,
observe that similar matrices have the same eigenvalues: in this case,
3, 0, and 4. So row reduce the matrix A − 3I and find what condition
on a guarantees a non-trivial nullspace; or row reduce A−0I or A−4I.
Another method is to observe that the first matrix must have rank 2
(since the second matrix has rank 2), so one of the columns must be
a linear combination of the other columns. One can see by inspection
that the middle column of the first matrix must be the first column
minus the third column.
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