Linear Algebra

1. Solve the linear system

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3} & =7 \\
3 x_{2}-2 x_{3} & =-8 \\
-2 x_{1}+x_{3} & =-2
\end{aligned}
$$

for the variables x_{1}, x_{2}, and x_{3}.

Solution. Gaussian elimination (add 2 times the first row to the third row, then divide the second row by 3 , then add 4 times the second row to the third row, then multiply the third row by 3) leads to the equivalent system

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3} & =7 \\
x_{2}-\frac{2}{3} x_{3} & =-\frac{8}{3} \\
x_{3} & =4 .
\end{aligned}
$$

Back substitution shows that $\left(x_{1}, x_{2}, x_{3}\right)=(3,0,4)$.
2. For most values of the parameter a, the linear system

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3} & =7 \\
3 x_{2}-2 x_{3} & =-8 \\
-2 x_{1}+a x_{3} & =-2
\end{aligned}
$$

has one and only one solution for the variables x_{1}, x_{2}, and x_{3}. What is the one exceptional value of a for which something different happens?

Solution. Gaussian elimination (the same steps as in the preceding problem) leads to the equivalent system

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3} & =7 \\
x_{2}-\frac{2}{3} x_{3} & =-\frac{8}{3} \\
\left(a-\frac{2}{3}\right) x_{3} & =\frac{4}{3} .
\end{aligned}
$$

When $a=\frac{2}{3}$, the third equation becomes the impossible equation $0=\frac{4}{3}$. Thus the system is inconsistent when $a=\frac{2}{3}$, which is the exceptional value of the parameter a.

