Linear Algebra

1. Let L be the linear operator on the space P_{3} of polynomials of degree less than 3 such that $L(p(x))=p^{\prime \prime}(x)+x p^{\prime}(x)$. Find the matrix that represents L with respect to the ordered basis $\left[1, x, 1+x^{2}\right]$.

Solution. One computes that $L(1)=0, L(x)=x$, and $L\left(1+x^{2}\right)=$ $2+2 x^{2}=2\left(1+x^{2}\right)$. Thus the operator L maps each basis element into a multiple of itself. The representing matrix is therefore the diagonal matrix

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right) .
$$

2. Let $A=\left(\begin{array}{rr}1 & -2 \\ 0 & 1\end{array}\right)$ and $B=\left(\begin{array}{rr}-3 & -2 \\ 8 & 5\end{array}\right)$. Suppose A represents a linear operator L on R^{2} with respect to the standard basis, and B represents the operator L with respect to a basis $\left[\mathbf{u}_{1}, \mathbf{u}_{2}\right]$. If $\mathbf{u}_{1}=\binom{7}{2}$ and $\mathbf{u}_{2}=\binom{a}{1}$, what is the value of a ?

Solution. Method 1 (computationally intensive): The transition matrix U from the \mathbf{u}-basis to the standard basis equals $\left(\begin{array}{ll}7 & a \\ 2 & 1\end{array}\right)$, and $B=U^{-1} A U$. Working out this matrix product gives an equation (actually four equivalent equations) for the parameter a, and one can solve to get $a=3$.
Method 2 (more conceptual): Observe that $B\binom{1}{0}=\binom{-3}{8}$, and what this equation in \mathbf{u}-coordinates means is that $L\left(\mathbf{u}_{1}\right)=-3 \mathbf{u}_{1}+8 \mathbf{u}_{2}$. On the other hand, one has in standard coordinates that $L\left(\mathbf{u}_{1}\right)=A\binom{7}{2}=$ $\binom{3}{2}$. Therefore $\binom{3}{2}=-3\binom{7}{2}+8\binom{a}{1}$. Hence $8\binom{a}{1}=\binom{24}{8}$, so $a=3$.

