Linear Algebra

1. Suppose L is the linear operator on R^{2} defined by $L\binom{x_{1}}{x_{2}}=\binom{-x_{1}}{x_{2}}$. Find the matrix that represents this transformation with respect to the basis $\left[\mathbf{u}_{1}, \mathbf{u}_{2}\right]$, where $\mathbf{u}_{1}=\binom{1}{1}$ and $\mathbf{u}_{\mathbf{2}}=\binom{-1}{1}$.

Solution. Since $L\left(\mathbf{u}_{1}\right)=\binom{-1}{1}=\mathbf{u}_{2}$, and $L\left(\mathbf{u}_{2}\right)=\binom{1}{1}=\mathbf{u}_{1}$, the required matrix is $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
An alternate solution, which is correct but unnecessarily long, is to observe that $A=\left(\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right)$ represents L with respect to the standard basis, $U=\left(\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right)$ is the transition matrix from the \mathbf{u}-basis to the standard basis, $U^{-1}=\left(\begin{array}{rr}1 / 2 & 1 / 2 \\ -1 / 2 & 1 / 2\end{array}\right)$ is the transition matrix from the standard basis to the \mathbf{u}-basis, and the required matrix is $U^{-1} A U$. Multiplying out this matrix product indeed gives the same answer $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
2. The first four Legendre polynomials are $p_{0}(x)=1, p_{1}(x)=x, p_{2}(x)=$ $\frac{1}{2}\left(3 x^{2}-1\right)$, and $p_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right)$. The ordered set $\left[p_{0}, p_{1}, p_{2}, p_{3}\right]$ forms a basis for the space of polynomials of degree 3 or less. Find the matrix that represents - with respect to this basis - the operator of differentiation.

Solution. Observe that $p_{0}^{\prime}(x)=0, p_{1}^{\prime}(x)=1=p_{0}(x), p_{2}^{\prime}(x)=3 x=$ $3 p_{1}(x)$, and $p_{3}^{\prime}(x)=\frac{1}{2}\left(15 x^{2}-3\right)=5 p_{2}(x)+p_{0}(x)$. Therefore the matrix that represents the operator of differentiation is

$$
\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 5 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

