
Math 304 Quiz 13

Linear Algebra
Summer 2006

1. Suppose A =









1 2 0 0
0 3 −3 6
1 0 2 −4
0 1 −1 2









. Find a basis for R(A)⊥.

Solution. An equivalent problem is to find the nullspace of the trans-

pose AT . Row reducing AT leads to the matrix









1 0 1 0
0 3 −2 1
0 0 0 0
0 0 0 0









, so

the vectors









x1

x2

x3

x4









in the nullspace of AT have the form









−x3

2

3
x3 −

1

3
x4

x3

x4









,

or x3









−1
2/3
1
0









+ x4









0
−1/3

0
1









.

Therefore the two vectors









−1
2/3
1
0









and









0
−1/3

0
1









form a basis for the

nullspace of AT . An alternative answer without fractions is the pair of

vectors









−3
2
3
0









and









0
−1

0
3









.

You can check that these vectors are indeed orthogonal to the columns
of the matrix A.
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2. When asked for a least-squares solution to the linear system





1 0 1
0 1 0
1 0 1









x1

x2

x3



 =





2
1

−1



 ,

MATLAB returns the solution (x1, x2, x3) = (0, 1, 1

2
), but Maple returns

the solution (x1, x2, x3) = (1

4
, 1, 1

4
). Explain the discrepancy.

Solution. The matrix does not have maximal rank (indeed, the first
and third columns are linearly dependent), so the least-squares prob-
lem does not have a unique solution. There are infinitely many vec-
tors x that minimize the length of the difference Ax − b, where A =




1 0 1
0 1 0
1 0 1



 and b =





2
1

−1



.

Since





1 0 1
0 1 0
1 0 1









0
1
1

2



 =





1

2

1
1

2



 =





1 0 1
0 1 0
1 0 1









1

4

1
1

4



, MATLAB’s so-

lution miminizes the norm of Ax − b if and only if Maple’s solution
does.

The least-squares problem AT Ax = ATb in this example becomes the
problem





2 0 2
0 1 0
2 0 2









x1

x2

x3



 =





1
1
1



 ,

and row reducing shows that the solutions to the least-squares prob-

lem have the form





1

2
− x3

1
x3



 with x3 arbitrary. MATLAB’s solution

corresponds to the value x3 = 1/2, and Maple’s solution corresponds
to the value x3 = 1/4.
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