Linear Algebra

1. Suppose $A=\left(\begin{array}{rrrr}1 & 2 & 0 & 0 \\ 0 & 3 & -3 & 6 \\ 1 & 0 & 2 & -4 \\ 0 & 1 & -1 & 2\end{array}\right)$. Find a basis for $R(A)^{\perp}$.

Solution. An equivalent problem is to find the nullspace of the transpose A^{T}. Row reducing A^{T} leads to the matrix $\left(\begin{array}{rrrr}1 & 0 & 1 & 0 \\ 0 & 3 & -2 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$, so the vectors $\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right)$ in the nullspace of A^{T} have the form $\left(\begin{array}{c}-x_{3} \\ \frac{2}{3} x_{3}-\frac{1}{3} x_{4} \\ x_{3} \\ x_{4}\end{array}\right)$, or $x_{3}\left(\begin{array}{c}-1 \\ 2 / 3 \\ 1 \\ 0\end{array}\right)+x_{4}\left(\begin{array}{c}0 \\ -1 / 3 \\ 0 \\ 1\end{array}\right)$.
Therefore the two vectors $\left(\begin{array}{c}-1 \\ 2 / 3 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}0 \\ -1 / 3 \\ 0 \\ 1\end{array}\right)$ form a basis for the nullspace of A^{T}. An alternative answer without fractions is the pair of vectors $\left(\begin{array}{r}-3 \\ 2 \\ 3 \\ 0\end{array}\right)$ and $\left(\begin{array}{r}0 \\ -1 \\ 0 \\ 3\end{array}\right)$.
You can check that these vectors are indeed orthogonal to the columns of the matrix A.

Linear Algebra

2. When asked for a least-squares solution to the linear system

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{r}
2 \\
1 \\
-1
\end{array}\right)
$$

MATLAB returns the solution $\left(x_{1}, x_{2}, x_{3}\right)=\left(0,1, \frac{1}{2}\right)$, but Maple returns the solution $\left(x_{1}, x_{2}, x_{3}\right)=\left(\frac{1}{4}, 1, \frac{1}{4}\right)$. Explain the discrepancy.

Solution. The matrix does not have maximal rank (indeed, the first and third columns are linearly dependent), so the least-squares problem does not have a unique solution. There are infinitely many vectors \mathbf{x} that minimize the length of the difference $A \mathbf{x}-\mathbf{b}$, where $A=$ $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)$ and $\mathbf{b}=\left(\begin{array}{r}2 \\ 1 \\ -1\end{array}\right)$.
Since $\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)\left(\begin{array}{c}0 \\ 1 \\ \frac{1}{2}\end{array}\right)=\left(\begin{array}{c}\frac{1}{2} \\ 1 \\ \frac{1}{2}\end{array}\right)=\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)\left(\begin{array}{c}\frac{1}{4} \\ 1 \\ \frac{1}{4}\end{array}\right)$, MATLAB's solution miminizes the norm of $A \mathbf{x}-\mathbf{b}$ if and only if Maple's solution does.

The least-squares problem $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$ in this example becomes the problem

$$
\left(\begin{array}{lll}
2 & 0 & 2 \\
0 & 1 & 0 \\
2 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

and row reducing shows that the solutions to the least-squares problem have the form $\left(\begin{array}{c}\frac{1}{2}-x_{3} \\ 1 \\ x_{3}\end{array}\right)$ with x_{3} arbitrary. MATLAB's solution corresponds to the value $x_{3}=1 / 2$, and Maple's solution corresponds to the value $x_{3}=1 / 4$.

