Linear Algebra

Both problems concern the inner-product space $C[0,1]$ of continuous functions on the interval $[0,1]$ with the following inner product:

$$
\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x
$$

1. For which positive number a does the function $f(x)=a x^{4}$ have norm equal to 1 ?

Solution. Since $\|f\|^{2}=\langle f, f\rangle=\int_{0}^{1} a^{2} x^{8} d x=\left[a^{2} \frac{x^{9}}{9}\right]_{0}^{1}=a^{2} / 9$, we want $a^{2} / 9=1$, so $a=3$.
2. Find the cosine of the angle between the functions $f(x)=\sqrt{x}$ and $g(x)=1$.

Solution. Since $\langle f, g\rangle=\|f\|\|g\| \cos (\theta)$, compute:

$$
\begin{aligned}
& \langle f, g\rangle=\int_{0}^{1} \sqrt{x} d x=\left[\frac{x^{3 / 2}}{3 / 2}\right]_{0}^{1}=\frac{2}{3} \\
& \|f\|^{2}=\int_{0}^{1} x d x=\left[\frac{x^{2}}{2}\right]_{0}^{1}=\frac{1}{2}, \quad \text { so }\|f\|=\frac{1}{\sqrt{2}}, \\
& \|g\|^{2}=\int_{0}^{1} 1^{2} d x=1, \quad \text { so }\|g\|=1
\end{aligned}
$$

Therefore

$$
\cos (\theta)=\frac{\langle f, g\rangle}{\|f\|\|g\|}=\frac{2 / 3}{1 / \sqrt{2}}=\frac{2 \sqrt{2}}{3} .
$$

[The question did not ask for the value of θ, which is $\arccos (2 \sqrt{2} / 3)$. Your calculator will give you an approximate value of either 0.34 radians or 19.5 degrees.]

