Linear Algebra

1. Use the Gram-Schmidt process to orthonormalize the pair of functions 1 and x in the space $C[0,1]$, where the inner product is given by $\langle f, g\rangle=$ $\int_{0}^{1} f(x) g(x) d x$.

Solution. Since $\|1\|^{2}=\int_{0}^{1} 1^{2} d x=1$, the first function is already normalized. Now $\langle 1, x\rangle=\int_{0}^{1} x d x=\frac{1}{2}$, so the Gram-Schmidt process says to replace the function x by the function $x-\frac{1}{2}$ to get a function orthogonal to the function 1. It remains to normalize this new function. Since $\left\|x-\frac{1}{2}\right\|^{2}=\int_{0}^{1}\left(x-\frac{1}{2}\right)^{2} d x=\int_{0}^{1}\left(x^{2}-x+\frac{1}{4}\right) d x=\frac{1}{3}-\frac{1}{2}+\frac{1}{4}=\frac{1}{12}$, the norm $\left\|x-\frac{1}{2}\right\|=\frac{1}{2 \sqrt{3}}$. Therefore the final orthonormal pair will be 1 and $2 \sqrt{3}\left(x-\frac{1}{2}\right)$, or equivalently 1 and $\sqrt{3}(2 x-1)$.
2. If $A=\left(\begin{array}{rr}-1 & 3 \\ 1 & 5\end{array}\right)$, find an orthogonal matrix Q and an upper triangular matrix R such that $A=Q R$. [\#2(a), p. 281]

Solution. Divide the first column by $\sqrt{2}$ to normalize it. The scalar product of the second column with the new first column is $-\frac{3}{\sqrt{2}}+\frac{5}{\sqrt{2}}=$ $\sqrt{2}$. Subtract $\sqrt{2}$ times the first column from the second column to get $\binom{3}{5}-\sqrt{2}\binom{-\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}=\binom{4}{4}$. Normalize the new second column by dividing it by $4 \sqrt{2}$. The resulting matrix is the orthogonal matrix $Q=\left(\begin{array}{rr}-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right)$. Tracking the operations that were performed shows that $R=\left(\begin{array}{cc}\sqrt{2} & \sqrt{2} \\ 0 & 4 \sqrt{2}\end{array}\right)$. Thus $\left(\begin{array}{rr}-1 & 3 \\ 1 & 5\end{array}\right)=\left(\begin{array}{cc}-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right)\left(\begin{array}{cc}\sqrt{2} & \sqrt{2} \\ 0 & 4 \sqrt{2}\end{array}\right)$.

