Linear Algebra

1. The vector $\left(\begin{array}{r}0 \\ -1 \\ 2\end{array}\right)$ is an eigenvector of the matrix $\left(\begin{array}{rrr}1 & 2 & 1 \\ 0 & 3 & 1 \\ 0 & a & -1\end{array}\right)$. Find the value of a.

Solution. Since $\left(\begin{array}{rrr}1 & 2 & 1 \\ 0 & 3 & 1 \\ 0 & a & -1\end{array}\right)\left(\begin{array}{r}0 \\ -1 \\ 2\end{array}\right)=\left(\begin{array}{c}0 \\ -1 \\ -a-2\end{array}\right)=\lambda\left(\begin{array}{r}0 \\ -1 \\ 2\end{array}\right)$, the eigenvalue λ must be equal to 1 (look at the second component of each vector). Therefore $-a-2=2$ (look at the third component of each vector), so $a=-4$.
2. The matrix $\left(\begin{array}{ll}3 & 2 \\ 1 & b\end{array}\right)$ has the number 2 as one of its eigenvalues. Determine the value of b.

Solution. Since 2 is an eigenvalue, $0=\operatorname{det}\left(\begin{array}{cc}3-2 & 2 \\ 1 & b-2\end{array}\right)=b-4$, so $b=4$.

An equivalent but less direct approach is to find the characteristic polynomial: $\lambda^{2}-(3+b) \lambda+3 b-2=0$. Substitute $\lambda=2$, and solve for b.
An alternative solution is that the matrix $\left(\begin{array}{cc}3-2 & 2 \\ 1 & b-2\end{array}\right)$ must have non-trivial nullspace. Row reduce:

$$
\left(\begin{array}{cc|c}
1 & 2 & 0 \\
1 & b-2 & 0
\end{array}\right) \xrightarrow{R_{2}-R_{1}}\left(\begin{array}{cc|l}
1 & 2 & 0 \\
0 & b-4 & 0
\end{array}\right)
$$

From the reduced matrix, one sees that there is a non-trivial nullspace if and only if $b=4$.

