Linear Algebra

1. The vector $\begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix}$ is an eigenvector of the matrix $\begin{pmatrix} 1 & 2 & 1 \\ 0 & 3 & 1 \\ 0 & a & -1 \end{pmatrix}$. Find the value of a.

Solution. Since $\begin{pmatrix} 1 & 2 & 1 \\ 0 & 3 & 1 \\ 0 & a & -1 \end{pmatrix} \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \\ -a-2 \end{pmatrix} = \lambda \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix}$, the

eigenvalue λ must be equal to 1 (look at the second component of each vector). Therefore -a-2=2 (look at the third component of each vector), so a=-4.

2. The matrix $\begin{pmatrix} 3 & 2 \\ 1 & b \end{pmatrix}$ has the number 2 as one of its eigenvalues. Determine the value of b.

Solution. Since 2 is an eigenvalue, $0 = \det \begin{pmatrix} 3-2 & 2 \\ 1 & b-2 \end{pmatrix} = b-4$, so b=4.

An equivalent but less direct approach is to find the characteristic polynomial: $\lambda^2 - (3+b)\lambda + 3b - 2 = 0$. Substitute $\lambda = 2$, and solve for b.

An alternative solution is that the matrix $\begin{pmatrix} 3-2 & 2 \\ 1 & b-2 \end{pmatrix}$ must have non-trivial nullspace. Row reduce:

$$\begin{pmatrix} 1 & 2 & | 0 \\ 1 & b-2 & | 0 \end{pmatrix} \xrightarrow{R_2-R_1} \begin{pmatrix} 1 & 2 & | 0 \\ 0 & b-4 & | 0 \end{pmatrix}$$

From the reduced matrix, one sees that there is a non-trivial null space if and only if b=4.

June 27, 2006 Dr. Boas