Linear Algebra

1. Suppose $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$. Compute whichever of the matrix products $A B$ and $B A$ makes sense.

Solution. Since A is a 2×3 matrix and B is a 2×2 matrix, the product that makes sense is $B A$. If you know how matrix multiplication works, then you can write down the answer by inspection; but here is a thematic way to see what the answer is. Since $B\binom{1}{0}=\binom{1}{3}$ and $B\binom{0}{1}=\binom{2}{4}$, and matrix multiplication acts linearly on the columns of the second matrix, it follows that $B A=\left(\begin{array}{lll}1 & 2 & 2 \\ 3 & 4 & 4\end{array}\right)$.
2. Express the vector $\left(\begin{array}{c}-4 \\ 12 \\ 11\end{array}\right)$ as a linear combination of the three vectors $\left(\begin{array}{l}1 \\ 6 \\ 3\end{array}\right),\left(\begin{array}{l}3 \\ 0 \\ 4\end{array}\right)$, and $\left(\begin{array}{l}5 \\ 3 \\ 1\end{array}\right)$.

Solution. Set up the system $x_{1}\left(\begin{array}{l}1 \\ 6 \\ 3\end{array}\right)+x_{2}\left(\begin{array}{l}3 \\ 0 \\ 4\end{array}\right)+x_{3}\left(\begin{array}{l}5 \\ 3 \\ 1\end{array}\right)=\left(\begin{array}{c}-4 \\ 12 \\ 11\end{array}\right)$ and solve using Gaussian elimination. A row-echelon form of the augmented matrix $\left(\begin{array}{ccc|c}1 & 3 & 5 & -4 \\ 6 & 0 & 3 & 12 \\ 3 & 4 & 1 & 11\end{array}\right)$ is $\left(\begin{array}{ccc|c}1 & 3 & 5 & -4 \\ 0 & 1 & \frac{3}{2} & -2 \\ 0 & 0 & 1 & -2\end{array}\right)$ [add -6 times row 1 to row 2 ; add -3 times row 1 to row 3 ; divide row 2 by -18 ; and add 5 times row 2 to row 3]. Back substitution gives $x_{3}=-2, x_{2}=1$, and $x_{1}=3$. Thus

$$
\left(\begin{array}{c}
-4 \\
12 \\
11
\end{array}\right)=3\left(\begin{array}{l}
1 \\
6 \\
3
\end{array}\right)+\left(\begin{array}{l}
3 \\
0 \\
4
\end{array}\right)-2\left(\begin{array}{l}
5 \\
3 \\
1
\end{array}\right) .
$$

