Linear Algebra

1. Suppose $A=\left(\begin{array}{lll}1 & 0 & 2 \\ 0 & 3 & 0 \\ 4 & 0 & 5\end{array}\right)$. Find a lower triangular matrix L and an upper triangular matrix U such that $A=L U$.

Solution. The matrix $\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1\end{array}\right)$ implements the operation of subtracting 4 times row 1 from row 3 , so $\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1\end{array}\right) A=\left(\begin{array}{rrr}1 & 0 & 2 \\ 0 & 3 & 0 \\ 0 & 0 & -3\end{array}\right)$. We can take $U=\left(\begin{array}{rrr}1 & 0 & 2 \\ 0 & 3 & 0 \\ 0 & 0 & -3\end{array}\right)$ and $L=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1\end{array}\right)^{-1}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1\end{array}\right)$.
2. Suppose $A=\left(\begin{array}{rrr}1 & -2 & 2 \\ 2 & 2 & -1 \\ 2 & 1 & a\end{array}\right)$. There is exactly one value of the parameter a for which the matrix A is singular (that is, fails to be invertible). Determine that special value of the parameter a.

Solution. One method is to use elementary row operations and see what condition on a results in a row of zeroes at the bottom: namely,

$$
\left(\begin{array}{rrr}
1 & -2 & 2 \\
2 & 2 & -1 \\
2 & 1 & a
\end{array}\right) \xrightarrow[R_{3}-2 R_{1}]{R_{2}-2 R_{1}}\left(\begin{array}{rrc}
1 & -2 & 2 \\
0 & 6 & -5 \\
0 & 5 & a-4
\end{array}\right) \xrightarrow{R_{3}-\frac{5}{6} R_{2}}\left(\begin{array}{rrc}
1 & -2 & 2 \\
0 & 6 & -5 \\
0 & 0 & a+\frac{1}{6}
\end{array}\right) .
$$

When $a=-\frac{1}{6}$, there is a row of zeroes, so that is the special value of a.
Another method is to try to compute an inverse matrix by applying Gauss-Jordan reduction to the augmented matrix

$$
\left(\begin{array}{rrr|rrr}
1 & -2 & 2 & 1 & 0 & 0 \\
2 & 2 & -1 & 0 & 1 & 0 \\
2 & 1 & a & 0 & 0 & 1
\end{array}\right) .
$$

You will find that at some point you need to divide by the quantity $6 a+1$, and this again shows that the special case occurs when $a=-\frac{1}{6}$.
As we will learn tomorrow, yet another method is to find what value of a makes the determinant of the matrix A equal to 0 .

