Linear Algebra

1. Suppose E is the basis $\left[\binom{5}{3},\binom{3}{2}\right]$ of R^{2}, and $\mathbf{z}=\binom{10}{7}$. Find the E-basis coordinates of the vector z. [exercise 4, page 161]

Solution. The matrix $\left(\begin{array}{ll}5 & 3 \\ 3 & 2\end{array}\right)$ whose columns are the E-basis vectors is the transition matrix from the E-basis to the standard basis. The inverse matrix $\left(\begin{array}{rr}2 & -3 \\ -3 & 5\end{array}\right)$ is the transition matrix from standard coordinates to E-basis coordinates. So the E-coordinates of z are $\left(\begin{array}{rr}2 & -3 \\ -3 & 5\end{array}\right)\binom{10}{7}=\binom{-1}{5}$. This means $\mathbf{z}=-\binom{5}{3}+5\binom{3}{2}$.
2. If $A=\left(\begin{array}{rrrr}1 & 0 & 9 & -3 \\ 2 & 1 & 8 & -1 \\ 3 & 2 & 7 & 1 \\ 4 & 3 & 6 & 3\end{array}\right)$, find a basis for the column space of A.

Solution. Row reduce $\left(R_{2}-2 R_{1}, R_{3}-3 R_{1}, R_{4}-4 R_{1}\right.$; then $R_{3}-2 R_{2}$, $\left.R_{4}-3 R_{2}\right)$ to get $\left(\begin{array}{rrrr}1 & 0 & 9 & -3 \\ 0 & 1 & -10 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$. From this echelon form one sees that the rank (hence the dimension of the column space) equals 2 , and the first two columns are linearly independent. Hence the vectors $\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 1 \\ 2 \\ 3\end{array}\right)$ are a basis for the column space. The answer is not unique. One could use any other pair of linearly independent vectors with the same span-for instance, the vectors $\left(\begin{array}{l}0 \\ 1 \\ 2 \\ 3\end{array}\right)$ and $\left(\begin{array}{r}1 \\ 0 \\ -1 \\ -2\end{array}\right)$.

