Linear Algebra

This worksheet concerns matrix representations of linear transformations. Suppose L is a linear operator on R^{3} defined by the formula

$$
L\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
2 x_{1}-x_{2}+x_{3} \\
2 x_{1}-x_{2}+x_{3} \\
-6 x_{2}+6 x_{3}
\end{array}\right) .
$$

1. Find the matrix A that represents the transformation L with respect to the standard basis.
2. Determine the rank of the matrix A, and find a basis for the nullspace of the matrix A.
3. Is the transformation L one-to-one? Is it onto? How do you know?
4. Let $\mathbf{u}_{1}=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right), \mathbf{u}_{2}=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$, and $\mathbf{u}_{3}=\left(\begin{array}{l}1 \\ 1 \\ 3\end{array}\right)$. One of these three vectors should look familiar from a previous part of the worksheet. Which vector do you recognize, and why?
5. Find the transition matrix U from \mathbf{u}-coordinates to standard coordinates, and find the transition matrix U^{-1} from standard coordinates to u-coordinates.
6. Find the matrix B that represents the transformation L with respect to the u-basis as follows: use the matrix U to go from \mathbf{u}-coordinates to standard coordinates, then use the matrix A to execute the transformation L in standard coordinates, then use the matrix U^{-1} to go back to the \mathbf{u}-coordinates.
7. Why is the \mathbf{u}-basis a particularly nice basis for describing the transformation L ?
8. Compute $L^{615}\left(\mathbf{u}_{1}\right)$.
9. The matrix A and the matrix $B=U^{-1} A U$ are called similar matrices. Show that A^{2} and B^{2} are similar matrices.
10. What is the relation between the determinant of A and the determinant of B ? What is the relation between the trace of A and the trace of B ?
