Examination 1 Linear Algebra

Write your name:Answer Key(2 points).In problems 1–5, circle the correct answer.(5 points each)

1. If A is a 3×3 matrix, then A is a singular matrix if and only if the linear system $A\mathbf{x} = \mathbf{0}$ is inconsistent. True False

Solution. The statement is false, because the *homogeneous* system $A\mathbf{x} = 0$ is *always* consistent (since $\mathbf{x} = 0$ is a solution).

2. If A is an invertible 3×3 matrix, then $(A^T)^{-1} = (A^{-1})^T$. True False

Solution. The statement is true, and here is one way to see why. Since $A^{-1}A = I$, taking the transpose shows that $A^T(A^{-1})^T = I$. By the definition of inverse matrix, this equation means that $(A^T)^{-1} = (A^{-1})^T$.

3. If \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 are elements of a vector space V, then the span of \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 (that is, the set of all linear combinations of \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3) is a subspace of V. True False

Solution. True; this is one of the fundamental ways of creating subspaces. The statement is Theorem 3.2.1 on page 128 of the textbook.

4. A linear system $A\mathbf{x} = \mathbf{b}$ is consistent if and only if the column vector \mathbf{b} can be written as a linear combination of the column vectors of the matrix A. True False

Solution. True, because the matrix product $A\mathbf{x}$ can be interpreted as a linear combination of the columns of the matrix. The statement is Theorem 1.3.1 on page 37 of the textbook.

5. The polynomials 1 + x, $1 + x^2$, and $2 + x + x^2$ form a basis for the three-dimensional vector space P_3 (the vector space of polynomials of degree less than 3). True False

Solution. False: since $(1 + x) + (1 + x^2) = 2 + x + x^2$, the three given polynomials are linearly dependent, so they cannot constitute a basis.

Examination 1 Linear Algebra

Summer 2007

In problems 6–9, fill in the blanks. (7 points per problem)

6. If
$$A = \begin{pmatrix} \Box & 0 \\ 0 & 4 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & -1 \\ 5 & \Box \end{pmatrix}$, then $2A + B = \begin{pmatrix} 7 & \Box \\ 5 & 2 \end{pmatrix}$.
Solution. If $A = \begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & -1 \\ 5 & -6 \end{pmatrix}$, then $2A + B = \begin{pmatrix} 7 & -1 \\ 5 & 2 \end{pmatrix}$.
7. $\begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & \Box \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ \Box & 1 & 0 \\ 0 & 0 & 1/4 \end{pmatrix}$
Solution. $\begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1/4 \end{pmatrix}$

8. If A is an $n \times m$ matrix, then the set of all solutions to the homogeneous system $A\mathbf{x} = \mathbf{0}$ is called the ______ of A.

Solution. If A is an $n \times m$ matrix, then the set of all solutions to the homogeneous system $A\mathbf{x} = \mathbf{0}$ is called the nullspace of A.

Solution. The system is consistent and has two free variables, so there are infinitely many solutions.

Examination 1 Linear Algebra

In **problems 10–12**, show your work and explain your method. Continue on the back if you need more space. (15 points each)

10. If $A = \begin{pmatrix} 1 & 3 & 0 \\ 6 & 19 & 4 \\ 0 & 8 & 33 \end{pmatrix}$, find a lower triangular matrix L and an upper

triangular matrix U such that A = LU.

Solution. Let E_1 be the elementary matrix $\begin{pmatrix} 1 & 0 & 0 \\ -6 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. Then $E_1 A = \begin{pmatrix} 1 & 3 & 0 \\ 0 & 1 & 4 \\ 0 & 8 & 33 \end{pmatrix}$. Let E_2 be the elementary matrix $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -8 & 1 \end{pmatrix}$. Then $E_2 E_1 A = \begin{pmatrix} 1 & 3 & 0 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{pmatrix}$:= U. We have A = LU if $L = E_1^{-1} E_2^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 6 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 8 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 6 & 1 & 0 \\ 0 & 8 & 1 \end{pmatrix}$.

11. Determine the value of a for which

$$\det \begin{pmatrix} 3 & 0 & 4 & 0 \\ 0 & 3 & 0 & 4 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & a \end{pmatrix} = 0.$$

Solution. One can either compute the determinant using a cofactor expansion or simplify the determinant using row operations. Here is a solution via the second method.

Making two row interchanges (hence two cancelling sign changes) gives

$$\begin{vmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & a \\ 3 & 0 & 4 & 0 \\ 0 & 3 & 0 & 4 \end{vmatrix}.$$

Now subtracting 3 times the first row from the third row and 3 times the second row from the fourth row gives

1	0	1	0	
0	1	0	a	
0	0	1	0	•
0	0	0	4 - 3a	

The determinant of this triangular matrix is the product of the entries on the main diagonal, 4 - 3a. Therefore the determinant is equal to 0 when a = 4/3.

12. Let \mathbf{v}_1 be the vector in \mathbb{R}^3 whose entries are the first three digits of your student identification number. Similarly, let \mathbf{v}_2 be the vector whose entries are the middle three digits of your identification number, and let \mathbf{v}_3 be the vector whose entries are the last three digits of your identification number. Are your vectors \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 linearly independent vectors in \mathbb{R}^3 ? Explain why or why not.

Solution. One method is to write the three vectors as the columns of a matrix and to compute the determinant. If the determinant is equal to 0, then the vectors are linearly dependent; otherwise the vectors are linearly independent (Theorem 3.3.1 on page 139 of the textbook). Alternatively, you could reduce the matrix to echelon form. If the echelon form has a row of zeroes at the bottom, then the original vectors are linearly dependent; otherwise the vectors are linearly dependent.