Linear Algebra

Write your name:
Answer Key
(2 points).
In problems 1-5, circle the correct answer. (5 points each)

1. If A is a 3×3 matrix, then A is a singular matrix if and only if the linear system $A \mathbf{x}=\mathbf{0}$ is inconsistent. True False

Solution. The statement is false, because the homogeneous system $A \mathbf{x}=0$ is always consistent (since $\mathbf{x}=0$ is a solution).
2. If A is an invertible 3×3 matrix, then $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.

True False

Solution. The statement is true, and here is one way to see why. Since $A^{-1} A=I$, taking the transpose shows that $A^{T}\left(A^{-1}\right)^{T}=I$. By the definition of inverse matrix, this equation means that $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.
3. If $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3} are elements of a vector space V, then the span of \mathbf{v}_{1}, \mathbf{v}_{2}, and \mathbf{v}_{3} (that is, the set of all linear combinations of $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3}) is a subspace of V. True False

Solution. True; this is one of the fundamental ways of creating subspaces. The statement is Theorem 3.2.1 on page 128 of the textbook.
4. A linear system $A \mathbf{x}=\mathbf{b}$ is consistent if and only if the column vector \mathbf{b} can be written as a linear combination of the column vectors of the matrix A.

True False

Solution. True, because the matrix product $A \mathrm{x}$ can be interpreted as a linear combination of the columns of the matrix. The statement is Theorem 1.3.1 on page 37 of the textbook.
5. The polynomials $1+x, 1+x^{2}$, and $2+x+x^{2}$ form a basis for the three-dimensional vector space P_{3} (the vector space of polynomials of degree less than 3). True False

Solution. False: since $(1+x)+\left(1+x^{2}\right)=2+x+x^{2}$, the three given polynomials are linearly dependent, so they cannot constitute a basis.

Linear Algebra

In problems 6-9, fill in the blanks. (7 points per problem)
6. If $A=\left(\begin{array}{cc}\square & 0 \\ 0 & 4\end{array}\right)$ and $B=\left(\begin{array}{cc}1 & -1 \\ 5 & \square\end{array}\right)$, then $2 A+B=\left(\begin{array}{cc}7 & \square \\ 5 & 2\end{array}\right)$.

Solution. If $A=\left(\begin{array}{cc}\boxed{3} & 0 \\ 0 & 4\end{array}\right)$ and $B=\left(\begin{array}{cc}1 & -1 \\ 5 & \boxed{-6}\end{array}\right)$, then $2 A+B=$ $\left(\begin{array}{rr}7 & \boxed{-1} \\ 5 & 2\end{array}\right)$.
7. $\left(\begin{array}{ccc}1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & \square\end{array}\right)^{-1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ \square & 1 & 0 \\ 0 & 0 & 1 / 4\end{array}\right)$

Solution. $\left(\begin{array}{ccc}1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & \boxed{4}\end{array}\right)^{-1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ \boxed{-3} & 1 & 0 \\ 0 & 0 & 1 / 4\end{array}\right)$
8. If A is an $n \times m$ matrix, then the set of all solutions to the homogeneous system $A \mathbf{x}=\mathbf{0}$ is called the \qquad of A.

Solution. If A is an $n \times m$ matrix, then the set of all solutions to the homogeneous system $A \mathbf{x}=\mathbf{0}$ is called the nullspace of A.
9. If $\left(\begin{array}{cccc|c}1 & 2 & 0 & 5 & 4 \\ 0 & 0 & 1 & 3 & 0\end{array}\right)$ is the end stage of the Gauss-Jordan reduction algorithm applied to the augmented matrix of a system of linear equations, then the system of equations has solution(s). [none, exactly one, or infinitely many?]

Solution. The system is consistent and has two free variables, so there are infinitely many solutions.

Linear Algebra

In problems 10-12, show your work and explain your method. Continue on the back if you need more space. (15 points each)
10. If $A=\left(\begin{array}{ccc}1 & 3 & 0 \\ 6 & 19 & 4 \\ 0 & 8 & 33\end{array}\right)$, find a lower triangular matrix L and an upper triangular matrix U such that $A=L U$.

Solution. Let E_{1} be the elementary matrix $\left(\begin{array}{rrr}1 & 0 & 0 \\ -6 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$. Then $E_{1} A=\left(\begin{array}{ccc}1 & 3 & 0 \\ 0 & 1 & 4 \\ 0 & 8 & 33\end{array}\right)$. Let E_{2} be the elementary matrix $\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -8 & 1\end{array}\right)$.
Then $E_{2} E_{1} A=\left(\begin{array}{lll}1 & 3 & 0 \\ 0 & 1 & 4 \\ 0 & 0 & 1\end{array}\right):=U$. We have $A=L U$ if

$$
L=E_{1}^{-1} E_{2}^{-1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
6 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 8 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
6 & 1 & 0 \\
0 & 8 & 1
\end{array}\right) .
$$

11. Determine the value of a for which

$$
\operatorname{det}\left(\begin{array}{llll}
3 & 0 & 4 & 0 \\
0 & 3 & 0 & 4 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & a
\end{array}\right)=0
$$

Solution. One can either compute the determinant using a cofactor expansion or simplify the determinant using row operations. Here is a solution via the second method.

Making two row interchanges (hence two cancelling sign changes) gives

$$
\left|\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & a \\
3 & 0 & 4 & 0 \\
0 & 3 & 0 & 4
\end{array}\right| .
$$

Linear Algebra

Now subtracting 3 times the first row from the third row and 3 times the second row from the fourth row gives

$$
\left|\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & a \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 4-3 a
\end{array}\right| .
$$

The determinant of this triangular matrix is the product of the entries on the main diagonal, $4-3 a$. Therefore the determinant is equal to 0 when $a=4 / 3$.
12. Let \mathbf{v}_{1} be the vector in R^{3} whose entries are the first three digits of your student identification number. Similarly, let \mathbf{v}_{2} be the vector whose entries are the middle three digits of your identification number, and let \mathbf{v}_{3} be the vector whose entries are the last three digits of your identification number. Are your vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3} linearly independent vectors in R^{3} ? Explain why or why not.

Solution. One method is to write the three vectors as the columns of a matrix and to compute the determinant. If the determinant is equal to 0 , then the vectors are linearly dependent; otherwise the vectors are linearly independent (Theorem 3.3.1 on page 139 of the textbook). Alternatively, you could reduce the matrix to echelon form. If the echelon form has a row of zeroes at the bottom, then the original vectors are linearly dependent; otherwise the vectors are linearly independent.

