Write your name: \qquad (2 points).
In problems 1-5, circle the correct answer. (5 points each)

1. If A is a 3×3 matrix, then A is a singular matrix if and only if the linear system $A \mathbf{x}=\mathbf{0}$ is inconsistent. True False
2. If A is an invertible 3×3 matrix, then $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.
True False
3. If $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3} are elements of a vector space V, then the span of \mathbf{v}_{1}, \mathbf{v}_{2}, and \mathbf{v}_{3} (that is, the set of all linear combinations of $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3}) is a subspace of V. True False
4. A linear system $A \mathbf{x}=\mathbf{b}$ is consistent if and only if the column vector \mathbf{b} can be written as a linear combination of the column vectors of the matrix A. True False
5. The polynomials $1+x, 1+x^{2}$, and $2+x+x^{2}$ form a basis for the three-dimensional vector space P_{3} (the vector space of polynomials of degree less than 3). True False

In problems 6-9, fill in the blanks. (7 points per problem)
6. If $A=\left(\begin{array}{cc}\square & 0 \\ 0 & 4\end{array}\right)$ and $B=\left(\begin{array}{cc}1 & -1 \\ 5 & \square\end{array}\right)$, then $2 A+B=\left(\begin{array}{cc}7 & \square \\ 5 & 2\end{array}\right)$.
7. $\left(\begin{array}{ccc}1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & \square\end{array}\right)^{-1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ \square & 1 & 0 \\ 0 & 0 & 1 / 4\end{array}\right)$
8. If A is an $n \times m$ matrix, then the set of all solutions to the homogeneous system $A \mathrm{x}=\mathbf{0}$ is called the \qquad of A.
9. If $\left(\begin{array}{llll|l}1 & 2 & 0 & 5 & 4 \\ 0 & 0 & 1 & 3 & 0\end{array}\right)$ is the end stage of the Gauss-Jordan reduction algorithm applied to the augmented matrix of a system of linear equations, then the system of equations has solution(s). [none, exactly one, or infinitely many?]

Examination 1
 Linear Algebra

Summer 2007

In problems 10-12, show your work and explain your method. Continue on the back if you need more space. (15 points each)
10. If $A=\left(\begin{array}{ccc}1 & 3 & 0 \\ 6 & 19 & 4 \\ 0 & 8 & 33\end{array}\right)$, find a lower triangular matrix L and an upper triangular matrix U such that $A=L U$.

Linear Algebra

11. Determine the value of a for which

$$
\operatorname{det}\left(\begin{array}{llll}
3 & 0 & 4 & 0 \\
0 & 3 & 0 & 4 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & a
\end{array}\right)=0
$$

Linear Algebra

12. Let \mathbf{v}_{1} be the vector in R^{3} whose entries are the first three digits of your student identification number. Similarly, let \mathbf{v}_{2} be the vector whose entries are the middle three digits of your identification number, and let \mathbf{v}_{3} be the vector whose entries are the last three digits of your identification number. Are your vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3} linearly independent vectors in R^{3} ? Explain why or why not.
