Examination 1 Linear Algebra

Write your **name**: ________(2 points). In **problems 1–5**, circle the correct answer. (5 points each)

- 1. If A is a 3×3 matrix, then A is a singular matrix if and only if the linear system $A\mathbf{x} = \mathbf{0}$ is inconsistent. True False
- 2. If A is an invertible 3×3 matrix, then $(A^T)^{-1} = (A^{-1})^T$. True False
- 3. If \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 are elements of a vector space V, then the span of \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 (that is, the set of all linear combinations of \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3) is a subspace of V. True False
- 4. A linear system $A\mathbf{x} = \mathbf{b}$ is consistent if and only if the column vector \mathbf{b} can be written as a linear combination of the column vectors of the matrix A. True False
- 5. The polynomials 1 + x, $1 + x^2$, and $2 + x + x^2$ form a basis for the three-dimensional vector space P_3 (the vector space of polynomials of degree less than 3). True False

In **problems 6–9**, fill in the blanks. (7 points per problem)

6. If
$$A = \begin{pmatrix} \Box & 0 \\ 0 & 4 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & -1 \\ 5 & \Box \end{pmatrix}$, then $2A + B = \begin{pmatrix} 7 & \Box \\ 5 & 2 \end{pmatrix}$.
7. $\begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & \Box \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ \Box & 1 & 0 \\ 0 & 0 & 1/4 \end{pmatrix}$

- 8. If A is an $n \times m$ matrix, then the set of all solutions to the homogeneous system $A\mathbf{x} = \mathbf{0}$ is called the ______ of A.

Math 304

Examination 1 Linear Algebra

In **problems 10–12**, show your work and explain your method. Continue on the back if you need more space. (15 points each)

10. If
$$A = \begin{pmatrix} 1 & 3 & 0 \\ 6 & 19 & 4 \\ 0 & 8 & 33 \end{pmatrix}$$
, find a lower triangular matrix L and an upper triangular matrix U such that $A = LU$.

Math 304

Examination 1 Linear Algebra

11. Determine the value of a for which

$$\det \begin{pmatrix} 3 & 0 & 4 & 0 \\ 0 & 3 & 0 & 4 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & a \end{pmatrix} = 0.$$

Examination 1 Linear Algebra

12. Let \mathbf{v}_1 be the vector in \mathbb{R}^3 whose entries are the first three digits of your student identification number. Similarly, let \mathbf{v}_2 be the vector whose entries are the middle three digits of your identification number, and let \mathbf{v}_3 be the vector whose entries are the last three digits of your identification number. Are your vectors \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 linearly independent vectors in \mathbb{R}^3 ? Explain why or why not.