Write your name: \qquad (2 points).
In problems $\mathbf{1 - 5}$, circle the correct answer. (5 points each)

1. If A is a 12×5 matrix (that is, A has 12 rows and 5 columns), then the null space of A has dimension at least 7 . True False
2. The function $L: R^{2} \rightarrow R^{1}$ defined by $L(\mathbf{x})=\|\mathbf{x}\|$ (that is, the norm of \mathbf{x}) is a linear transformation. True False
3. The matrix $\left(\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right)$ is similar to the matrix $\left(\begin{array}{ll}2 & 4 \\ 0 & 6\end{array}\right)$. True False
4. If A is a 3×3 matrix of rank 2 , then the dimension of the null space of A^{T} (the transpose) is equal to 2 . True False
5. If a 2×2 matrix of real numbers has purely imaginary eigenvalues, then the determinant of the matrix is negative. True False

In problems 6-9, fill in the blanks. (7 points per problem)
6. If L is the linear operator on R^{2} that doubles the length of each vector and also rotates each vector by 30° counterclockwise, then the standard matrix representation of L is $\left(\begin{array}{cc}\sqrt{3} & \square \\ \square & \square\end{array}\right)$.
7. If the scalar product of two vectors in R^{3} is equal to 0 , then the two vectors are said to be \qquad
8. When $b=\square$, the linear system $\left\{\begin{array}{l}1 x_{1}+2 x_{2}=5 \\ 2 x_{1}+b x_{2}=0\end{array}\right\}$ has $x_{1}=-1$ and $x_{2}=1$ as a solution in the sense of least squares.
9. Suppose a linear transformation $L: R^{2} \rightarrow R^{2}$ has the standard matrix representation $\left(\begin{array}{ll}2 & 3 \\ 0 & 5\end{array}\right)$. If $\mathbf{u}_{1}=\binom{1}{0}$ and $\mathbf{u}_{2}=\binom{1}{1}$, then the matrix representation of L with respect to the basis $\left[\mathbf{u}_{1}, \mathbf{u}_{2}\right]$ is

Examination 2
 Linear Algebra

Summer 2007

In problems 10-12, show your work and explain your method. Continue on the back if you need more space. (15 points each)
10. Suppose $A=\left(\begin{array}{llll}1 & -1 & 1 & -1 \\ 4 & -4 & 5 & -5\end{array}\right)$. Find an orthonormal basis for the null space of the matrix A.

Linear Algebra

11. Suppose $A=\left(\begin{array}{rrr}7 & 1 & -4 \\ 4 & 4 & -4 \\ 0 & 0 & 0\end{array}\right)$. Find a diagonal matrix that is similar to A.

Linear Algebra

12. Consider the inner product space of continuous functions on the interval $[-1,1]$, where $\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x$. Find the projection of the function x^{2} onto the subspace spanned by the two functions 1 and x.
