Linear Algebra

1. Let S be the subspace of R^{3} spanned by the vectors $\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$ and $\left(\begin{array}{r}1 \\ -1 \\ 2\end{array}\right)$.

Find S^{\perp}, the orthogonal complement of S.
[This is exercise 3(b) on page 233.]
Solution. We seek vectors $\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$ such that

$$
\left(\begin{array}{rrr}
1 & 2 & 1 \\
1 & -1 & 2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\binom{0}{0} .
$$

We can find such vectors by Gaussian elimination:

$$
\left(\begin{array}{rrr|r}
1 & 2 & 1 & 0 \\
1 & -1 & 2 & 0
\end{array}\right) \xrightarrow{R_{2} \rightarrow R_{2}-R_{1}}\left(\begin{array}{rrr|r}
1 & 2 & 1 & 0 \\
0 & -3 & 1 & 0
\end{array}\right) .
$$

From the echelon form, we see that x_{3} is a free variable, $x_{2}=x_{3} / 3$, and $x_{1}=-5 x_{3} / 3$. Consequently, S^{\perp} consists of all vectors of the form $x_{3}\left(\begin{array}{c}-5 / 3 \\ 1 / 3 \\ 1\end{array}\right)$, where x_{3} is arbitrary. In other words, S^{\perp} is the span of the vector $\left(\begin{array}{c}-5 / 3 \\ 1 / 3 \\ 1\end{array}\right)$.
Multiplying the basis vector by a nonzero scalar gives an equivalent answer, so you could also say that S^{\perp} is the span of the vector $\left(\begin{array}{r}-5 \\ 1 \\ 3\end{array}\right)$, which is a simpler answer.
Notice that S is a two-dimensional subspace of R^{3}, and S^{\perp} is a onedimensional subspace of R^{3} : the dimensions of the orthogonal subspaces add up to the dimension of the whole space.

Linear Algebra

2. Find a least squares solution of the linear system

$$
\left(\begin{array}{rr}
1 & -1 \\
0 & 1 \\
2 & 0
\end{array}\right)\binom{x_{1}}{x_{2}}=\left(\begin{array}{l}
3 \\
0 \\
4
\end{array}\right) .
$$

Solution. Our method for solving least squares problems is to multiply by the transposed matrix $\left(\begin{array}{rrr}1 & 0 & 2 \\ -1 & 1 & 0\end{array}\right)$. The result is the new system

$$
\left(\begin{array}{rr}
5 & -1 \\
-1 & 2
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{11}{-3} .
$$

One way to finish the solution is to multiply by the inverse matrix $\frac{1}{9}\left(\begin{array}{ll}2 & 1 \\ 1 & 5\end{array}\right)$ to obtain

$$
\binom{x_{1}}{x_{2}}=\frac{1}{9}\left(\begin{array}{ll}
2 & 1 \\
1 & 5
\end{array}\right)\binom{11}{-3}=\frac{1}{9}\binom{19}{-4} .
$$

Thus $x_{1}=19 / 9$ and $x_{2}=-4 / 9$.
An alternative way to complete the solution is to use Gaussian elimination:

$$
\left(\begin{array}{rr|r}
5 & -1 & 11 \\
-1 & 2 & -3
\end{array}\right) \xrightarrow{R_{1} \leftrightarrow R_{2}}\left(\begin{array}{rr|r}
-1 & 2 & -3 \\
5 & -1 & 11
\end{array}\right) \xrightarrow{R_{2} \rightarrow R_{2}+5 R_{1}}\left(\begin{array}{rr|r}
-1 & 2 & -3 \\
0 & 9 & -4
\end{array}\right) .
$$

From the second row, we see that $x_{2}=-4 / 9$, and back substitution shows that $x_{1}=19 / 9$, as before.

