Linear Algebra

1. Find values of a and b for which the vector $\binom{3}{4}$ is an eigenvector of the matrix $\left(\begin{array}{ll}1 & a \\ 2 & b\end{array}\right)$ with eigenvalue 5 .

Solution. The given information says that

$$
\left(\begin{array}{ll}
1 & a \\
2 & b
\end{array}\right)\binom{3}{4}=5\binom{3}{4} .
$$

Equivalently,

$$
\begin{aligned}
& 3+4 a=15, \\
& 6+4 b=20 .
\end{aligned}
$$

Solving each of these equations shows that $a=3$ and $b=7 / 2$.
2. In the space $C[0,1]$ with inner product $\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x$, use the Gram-Schmidt procedure to find an orthonormal basis for the subspace spanned by the functions 1 and x.

Solution. Since $\|1\|^{2}=\langle 1,1\rangle=\int_{0}^{1} 1^{2} d x=1$, the function 1 is already normalized. Now $\langle x, 1\rangle=\int_{0}^{1} x d x=\frac{1}{2}$, so the function $x-\frac{1}{2}$ is orthogonal to the function 1. It remains to normalize the function $x-\frac{1}{2}$.
Since $\left\|x-\frac{1}{2}\right\|^{2}=\int_{0}^{1}\left(x-\frac{1}{2}\right)^{2} d x=\int_{0}^{1}\left(x^{2}-x+\frac{1}{4}\right) d x=\frac{1}{3}-\frac{1}{2}+\frac{1}{4}=\frac{1}{12}$, the normalized function equals $\sqrt{12}\left(x-\frac{1}{2}\right)$, or $\sqrt{3}(2 x-1)$.
Thus the required orthonormal basis is $[1, \sqrt{3}(2 x-1)]$.

