Math 304

Quiz 15 Linear Algebra

Summer 2007

1. Find values of a and b for which the vector $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$ is an eigenvector of the matrix $\begin{pmatrix} 1 & a \\ 2 & b \end{pmatrix}$ with eigenvalue 5.

Solution. The given information says that

$$\begin{pmatrix} 1 & a \\ 2 & b \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} = 5 \begin{pmatrix} 3 \\ 4 \end{pmatrix}.$$

Equivalently,

3 + 4a = 15, 6 + 4b = 20.

Solving each of these equations shows that a = 3 and b = 7/2.

2. In the space C[0,1] with inner product $\langle f,g\rangle = \int_0^1 f(x)g(x)\,dx$, use the Gram-Schmidt procedure to find an orthonormal basis for the subspace spanned by the functions 1 and x.

Solution. Since $||1||^2 = \langle 1, 1 \rangle = \int_0^1 1^2 dx = 1$, the function 1 is already normalized. Now $\langle x, 1 \rangle = \int_0^1 x \, dx = \frac{1}{2}$, so the function $x - \frac{1}{2}$ is orthogonal to the function 1. It remains to normalize the function $x - \frac{1}{2}$.

Since $||x - \frac{1}{2}||^2 = \int_0^1 (x - \frac{1}{2})^2 dx = \int_0^1 (x^2 - x + \frac{1}{4}) dx = \frac{1}{3} - \frac{1}{2} + \frac{1}{4} = \frac{1}{12}$, the normalized function equals $\sqrt{12} (x - \frac{1}{2})$, or $\sqrt{3} (2x - 1)$.

Thus the required orthonormal basis is $[1, \sqrt{3}(2x-1)]$.