Linear Algebra

1. If $A=\left(\begin{array}{ccc}1 & 0 & 2 \\ 5 & 3 & 10 \\ 0 & 18 & 4\end{array}\right)$, find a lower-triangular matrix L and an uppertriangular matrix U such that $A=L U$.

Solution. Let E_{1} denote the elementary matrix $\left(\begin{array}{rrr}1 & 0 & 0 \\ -5 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$, which implements the row operation of subtracting 5 times the first row from the second row. Then

$$
E_{1} A=\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & 3 & 0 \\
0 & 18 & 4
\end{array}\right)
$$

Similarly, let E_{2} denote the elementary matrix $\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -6 & 1\end{array}\right)$, which implements the row operation of subtracting 6 times the second row from the third row. Then

$$
E_{2} E_{1} A=\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right) .
$$

Consequently, we may take U to be the upper triangular matrix that appears on the right-hand side: namely,

$$
U=\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right)
$$

Then $A=E_{1}^{-1} E_{2}^{-1} U$, and $L=E_{1}^{-1} E_{2}^{-1}$. Explicitly,

$$
L=\left(\begin{array}{lll}
1 & 0 & 0 \\
5 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 6 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
5 & 1 & 0 \\
0 & 6 & 1
\end{array}\right) .
$$

Linear Algebra

Remarks on the first problem

(a) You can easily check the answer by multiplying L times U to verify that you recover the original matrix A.
(b) The answer is not unique. You can get another valid answer by multiplying L on the right by a diagonal matrix, say $\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5\end{array}\right)$, and simultaneously multiplying U on the left by the inverse diagonal matrix $\left(\begin{array}{ccc}1 / 2 & 0 & 0 \\ 0 & 1 / 3 & 0 \\ 0 & 0 & 1 / 5\end{array}\right)$. Thus another answer is:

$$
A=\left(\begin{array}{ccc}
2 & 0 & 0 \\
10 & 3 & 0 \\
0 & 18 & 5
\end{array}\right)\left(\begin{array}{ccc}
1 / 2 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 4 / 5
\end{array}\right) .
$$

2. Find the value of a for which det $\left(\begin{array}{cccc}1 & 2 & 3 & 4 \\ 0 & 1 & 5 & 6 \\ 0 & 0 & 1 & 7 \\ 1 & 0 & 0 & a\end{array}\right)=0$.

Solution. There are various ways to show that $a=41$. Here are two methods.

Method 1 Use elementary row operations to bring the matrix to triangular form, and use that the determinant of a triangular matrix equals the product of the diagonal elements:

$$
\begin{aligned}
& \left|\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 1 & 5 & 6 \\
0 & 0 & 1 & 7 \\
1 & 0 & 0 & a
\end{array}\right| \xrightarrow[\left.{\left.R_{1} \rightarrow \stackrel{R_{1}-2 R_{2}}{=}\left|\begin{array}{rrrr}
1 & 0 & -7 & -8 \\
0 & 1 & 5 & 6 \\
0 & 0 & 1 & 7 \\
1 & 0 & 0 & a
\end{array}\right| \xrightarrow[R_{1} \rightarrow R_{1}+7 R_{3}]{=} \right\rvert\, \begin{array}{llll}
1 & 0 & 0 & 41 \\
0 & 1 & 5 & 6 \\
0 & 0 & 1 & 7 \\
1 & 0 & 0 & a
\end{array}} \right\rvert\,]{\stackrel{R_{4}}{=}-R_{4}-R_{1}}\left|\begin{array}{llll}
1 & 0 & 0 & 41 \\
0 & 1 & 5 & 6 \\
0 & 0 & 1 & 7 \\
0 & 0 & 0 & a-41
\end{array}\right|=a-41 .
\end{aligned}
$$

Thus the determinant is equal to 0 when $a=41$.

Linear Algebra

Method 2 Use a cofactor expansion to compute the determinant, expanding along the bottom row:

$$
\begin{aligned}
\left|\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 1 & 5 & 6 \\
0 & 0 & 1 & 7 \\
1 & 0 & 0 & a
\end{array}\right| & =-\left|\begin{array}{lll}
2 & 3 & 4 \\
1 & 5 & 6 \\
0 & 1 & 7
\end{array}\right|+a\left|\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 5 \\
0 & 0 & 1
\end{array}\right| \\
& =-\left(0\left|\begin{array}{ll}
3 & 4 \\
5 & 6
\end{array}\right|-\left|\begin{array}{ll}
2 & 4 \\
1 & 6
\end{array}\right|+7\left|\begin{array}{ll}
2 & 3 \\
1 & 5
\end{array}\right|\right)+a \cdot 1 \\
& =-(0-(12-4)+7(10-3))+a=a-41 .
\end{aligned}
$$

As before, we see that the determinant is equal to 0 when $a=41$.

