Linear Algebra

1. The five vectors

$$
\mathbf{x}_{1}=\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right), \quad \mathbf{x}_{2}=\left(\begin{array}{l}
2 \\
5 \\
4
\end{array}\right), \quad \mathbf{x}_{3}=\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right), \quad \mathbf{x}_{4}=\left(\begin{array}{l}
2 \\
7 \\
4
\end{array}\right), \quad \mathbf{x}_{5}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

span R^{3}. Find three of these vectors that form a basis for R^{3}. (This is exercise 10 on page 151 of the textbook.)

Solution. In a three-dimensional vector space, any three linearly independent vectors form a basis. One way to solve the problem is by trial and error: pick three of the given vectors, test them for linear independence (for instance, by writing the vectors as the columns of a matrix and checking to see if the determinant of the matrix is nonzero), and then try a different set of three if the first set does not work. If you test first $\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right]$, then $\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{4}\right]$, and then $\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{5}\right]$, you will succeed on the third try.
The systematic method is to perform Gaussian elimination on the matrix whose columns are the given vectors:

$$
\begin{aligned}
& \left(\begin{array}{llllr}
1 & 2 & 1 & 2 & 1 \\
2 & 5 & 3 & 7 & 1 \\
2 & 4 & 2 & 4 & 0
\end{array}\right) \xrightarrow{R_{2} \rightarrow R_{2}-2 R_{1}}\left(\begin{array}{llllr}
1 & 2 & 1 & 2 & 1 \\
0 & 1 & 1 & 3 & -1 \\
0 & 0 & 0 & 0 & -2
\end{array}\right) \\
& R_{3} \rightarrow R_{3}-2 R_{1} /(-2) \\
& \left(\begin{array}{llllr}
1 & 2 & 1 & 2 & 1 \\
0 & 1 & 1 & 3 & -1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) .
\end{aligned}
$$

The interpretation of the calculation is that the first, second, and fifth columns are linearly independent vectors (since the first, second, and fifth variables are the lead variables). Therefore $\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{5}\right]$ is a basis for R^{3}.

The answer is not unique. Closer scrutiny shows that \mathbf{x}_{5} together with any two of the other vectors also forms a basis for R^{3}.

Linear Algebra

2. Find the coordinates of the vector $\binom{1}{1}$ with respect to the ordered basis $\left[\binom{5}{3},\binom{3}{2}\right]$. In other words, find numbers c_{1} and c_{2} such that

$$
\binom{1}{1}=c_{1}\binom{5}{3}+c_{2}\binom{3}{2} .
$$

(This is part of exercise 4 on page 161 of the textbook.)

Solution. You can solve the problem from first principles, as on the first day of class. You are solving a pair of simultaneous equations for two unknowns, so eliminate one of the variables and proceed.
The thematic method, however, is to say that the matrix $\left(\begin{array}{ll}5 & 3 \\ 3 & 2\end{array}\right)$ is the transition matrix from the indicated nonstandard basis to the standard basis, so the inverse matrix $\left(\begin{array}{ll}5 & 3 \\ 3 & 2\end{array}\right)^{-1}$ is the transition matrix from the standard basis to the nonstandard basis. Therefore

$$
\binom{c_{1}}{c_{2}}=\left(\begin{array}{ll}
5 & 3 \\
3 & 2
\end{array}\right)^{-1}\binom{1}{1}=\left(\begin{array}{rr}
2 & -3 \\
-3 & 5
\end{array}\right)\binom{1}{1}=\binom{-1}{2} .
$$

In other words, $c_{1}=-1$ and $c_{2}=2$.

