Linear Algebra

1. The five vectors

$$
\mathbf{x}_{1}=\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right), \quad \mathbf{x}_{2}=\left(\begin{array}{l}
2 \\
5 \\
4
\end{array}\right), \quad \mathbf{x}_{3}=\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right), \quad \mathbf{x}_{4}=\left(\begin{array}{l}
2 \\
7 \\
4
\end{array}\right), \quad \mathbf{x}_{5}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

span R^{3}. Find three of these vectors that form a basis for R^{3}. (This is exercise 10 on page 151 of the textbook.)
2. Find the coordinates of the vector $\binom{1}{1}$ with respect to the ordered basis $\left[\binom{5}{3},\binom{3}{2}\right]$. In other words, find numbers c_{1} and c_{2} such that

$$
\binom{1}{1}=c_{1}\binom{5}{3}+c_{2}\binom{3}{2} .
$$

(This is part of exercise 4 on page 161 of the textbook.)

