Linear Algebra

1. Let $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$ and $\mathbf{b}=\left(\begin{array}{l}10 \\ 11 \\ 12\end{array}\right)$. Is the vector \mathbf{b} in the column space of the matrix A ? Explain why or why not.

Solution. An equivalent question is whether the system $A \mathbf{x}=\mathbf{b}$ is consistent. That question can be answered by Gaussian elimination applied to an augmented matrix:

$$
\begin{aligned}
& \left(\begin{array}{rrr|r}
1 & 2 & 3 & 10 \\
4 & 5 & 6 & 11 \\
7 & 8 & 9 & 12
\end{array}\right) \xrightarrow[R_{3} \rightarrow R_{3}-7 R_{1}]{R_{2} \rightarrow R_{2}-4 R_{1}}\left(\begin{array}{rrr|r}
1 & 2 & 3 & 10 \\
0 & -3 & -6 & -29 \\
0 & -6 & -12 & -58
\end{array}\right) \\
& \xrightarrow{R_{3} \rightarrow R_{3}-2 R_{2}}\left(\begin{array}{rrr|r}
1 & 2 & 3 & 10 \\
0 & -3 & -6 & -29 \\
0 & 0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

The echelon form shows that the system is consistent; hence the vector \mathbf{b} does belong to the column space of the matrix A.
You were not required to write down a specific linear combination of the columns that equals \mathbf{b}, but the echelon form shows how to do so. Namely, x_{3} is a free variable, $x_{2}=\frac{29}{3}-2 x_{3}$, and back substitution shows that $x_{1}=-\frac{28}{3}+x_{3}$. Taking $x_{3}=1 / 3$ is particularly convenient, since then x_{1} and x_{2} become integers; we then have the following representation of the vector \mathbf{b} :

$$
-9\left(\begin{array}{l}
1 \\
4 \\
7
\end{array}\right)+9\left(\begin{array}{l}
2 \\
5 \\
8
\end{array}\right)+\frac{1}{3}\left(\begin{array}{l}
3 \\
6 \\
9
\end{array}\right)=\left(\begin{array}{l}
10 \\
11 \\
12
\end{array}\right) .
$$

Alternatively, you might set x_{3} equal to 0 , which leads to the following representation of \mathbf{b} :

$$
-\frac{28}{3}\left(\begin{array}{l}
1 \\
4 \\
7
\end{array}\right)+\frac{29}{3}\left(\begin{array}{l}
2 \\
5 \\
8
\end{array}\right)+0\left(\begin{array}{l}
3 \\
6 \\
9
\end{array}\right)=\left(\begin{array}{l}
10 \\
11 \\
12
\end{array}\right) .
$$

Linear Algebra

2. Let L be the linear transformation from R^{3} into R^{2} such that (with respect to the standard basis) $L\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\binom{x_{2}}{x_{1}}$. If $\mathbf{u}_{1}=\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right), \mathbf{u}_{2}=$ $\left(\begin{array}{r}3 \\ 4 \\ -4\end{array}\right), \mathbf{u}_{3}=\left(\begin{array}{r}1 \\ 1 \\ -2\end{array}\right), \mathbf{v}_{1}=\binom{3}{2}$, and $\mathbf{v}_{2}=\binom{4}{3}$, find the matrix representation of L with respect to the ordered bases $\left[\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right]$ and $\left[\mathbf{v}_{1}, \mathbf{v}_{2}\right]$.

Solution. Since $L\left(\mathbf{u}_{1}\right)=\binom{2}{1}, L\left(\mathbf{u}_{2}\right)=\binom{4}{3}$, and $L\left(\mathbf{u}_{3}\right)=\binom{1}{1}$, the matrix $\left(\begin{array}{lll}2 & 4 & 1 \\ 1 & 3 & 1\end{array}\right)$ represents L with respect to the basis $\left[\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right]$ in R^{3} and the standard basis in R^{2}. The matrix $\left(\begin{array}{ll}3 & 4 \\ 2 & 3\end{array}\right)$ is the transition matrix from the basis $\left[\mathbf{v}_{1}, \mathbf{v}_{2}\right]$ to the standard basis in R^{2}, and the inverse matrix $\left(\begin{array}{rr}3 & -4 \\ -2 & 3\end{array}\right)$ is the transition matrix from the standard basis to the basis $\left[\mathbf{v}_{1}, \mathbf{v}_{2}\right]$. Therefore the product matrix

$$
\left(\begin{array}{rr}
3 & -4 \\
-2 & 3
\end{array}\right)\left(\begin{array}{lll}
2 & 4 & 1 \\
1 & 3 & 1
\end{array}\right)=\left(\begin{array}{rrr}
2 & 0 & -1 \\
-1 & 1 & 1
\end{array}\right)
$$

is the required matrix that represents L with respect to the bases $\left[\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right]$ and $\left[\mathbf{v}_{1}, \mathbf{v}_{2}\right]$.

