Math 304

$\begin{array}{c} {}_{{\rm Quiz}\ 7}\\ {\rm {\bf Linear}\ Algebra}\end{array}$

1. Let
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 10 \\ 11 \\ 12 \end{pmatrix}$. Is the vector \mathbf{b} in the column

space of the matrix A? Explain why or why not.

Solution. An equivalent question is whether the system $A\mathbf{x} = \mathbf{b}$ is consistent. That question can be answered by Gaussian elimination applied to an augmented matrix:

The echelon form shows that the system is consistent; hence the vector \mathbf{b} does belong to the column space of the matrix A.

You were not required to write down a specific linear combination of the columns that equals **b**, but the echelon form shows how to do so. Namely, x_3 is a free variable, $x_2 = \frac{29}{3} - 2x_3$, and back substitution shows that $x_1 = -\frac{28}{3} + x_3$. Taking $x_3 = 1/3$ is particularly convenient, since then x_1 and x_2 become integers; we then have the following representation of the vector **b**:

$$-9\begin{pmatrix}1\\4\\7\end{pmatrix}+9\begin{pmatrix}2\\5\\8\end{pmatrix}+\frac{1}{3}\begin{pmatrix}3\\6\\9\end{pmatrix}=\begin{pmatrix}10\\11\\12\end{pmatrix}.$$

Alternatively, you might set x_3 equal to 0, which leads to the following representation of **b**:

$$-\frac{28}{3} \begin{pmatrix} 1\\4\\7 \end{pmatrix} + \frac{29}{3} \begin{pmatrix} 2\\5\\8 \end{pmatrix} + 0 \begin{pmatrix} 3\\6\\9 \end{pmatrix} = \begin{pmatrix} 10\\11\\12 \end{pmatrix}.$$

Quiz 7 Linear Algebra

2. Let *L* be the linear transformation from R^3 into R^2 such that (with respect to the standard basis) $L\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix} = \begin{pmatrix}x_2\\x_1\end{pmatrix}$. If $\mathbf{u}_1 = \begin{pmatrix}1\\2\\1\end{pmatrix}$, $\mathbf{u}_2 = \begin{pmatrix}3\\4\\-4\end{pmatrix}$, $\mathbf{u}_3 = \begin{pmatrix}1\\1\\-2\end{pmatrix}$, $\mathbf{v}_1 = \begin{pmatrix}3\\2\end{pmatrix}$, and $\mathbf{v}_2 = \begin{pmatrix}4\\3\end{pmatrix}$, find the matrix representation of *L* with respect to the ordered bases $[\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3]$ and $[\mathbf{v}_1, \mathbf{v}_2]$.

Solution. Since $L(\mathbf{u}_1) = \begin{pmatrix} 2\\1 \end{pmatrix}$, $L(\mathbf{u}_2) = \begin{pmatrix} 4\\3 \end{pmatrix}$, and $L(\mathbf{u}_3) = \begin{pmatrix} 1\\1 \end{pmatrix}$, the matrix $\begin{pmatrix} 2 & 4 & 1\\1 & 3 & 1 \end{pmatrix}$ represents L with respect to the basis $[\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3]$ in R^3 and the standard basis in R^2 . The matrix $\begin{pmatrix} 3 & 4\\2 & 3 \end{pmatrix}$ is the transition matrix from the basis $[\mathbf{v}_1, \mathbf{v}_2]$ to the standard basis in R^2 , and the inverse matrix $\begin{pmatrix} 3 & -4\\-2 & 3 \end{pmatrix}$ is the transition matrix from the standard basis to the basis $[\mathbf{v}_1, \mathbf{v}_2]$. Therefore the product matrix

$$\begin{pmatrix} 3 & -4 \\ -2 & 3 \end{pmatrix} \begin{pmatrix} 2 & 4 & 1 \\ 1 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & -1 \\ -1 & 1 & 1 \end{pmatrix}$$

is the required matrix that represents L with respect to the bases $[\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3]$ and $[\mathbf{v}_1, \mathbf{v}_2]$.