Linear Algebra

1. If $\mathbf{x}=\left(\begin{array}{r}2 \\ -5 \\ 4\end{array}\right)$ and $\mathbf{y}=\left(\begin{array}{r}1 \\ 2 \\ -1\end{array}\right)$, find the vector projection of \mathbf{x} onto \mathbf{y}. [This is exercise 3(d) on page 224 of the textbook.]

Solution. The vector projection equals the scalar projection $\mathbf{x} \cdot \frac{\mathbf{y}}{\|\mathbf{y}\|}$ times a unit vector $\frac{\mathbf{y}}{\|\mathbf{y}\|}$ in the direction of \mathbf{y}, or

$$
\left(\frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{y}\|^{2}}\right) \mathbf{y}=\left(\frac{2-10-4}{1+4+1}\right) \mathbf{y}=-2 \mathbf{y}=\left(\begin{array}{r}
-2 \\
-4 \\
2
\end{array}\right) .
$$

2. Let L be the linear transformation from R^{2} to R^{2} given with respect to the standard basis by $L\binom{x_{1}}{x_{2}}=\binom{0}{x_{2}}$, let $\mathbf{u}_{1}=\binom{1}{1}$, and let $\mathbf{u}_{2}=\binom{-1}{1}$. Find the matrix that represents the transformation L with respect to the basis $\left[\mathbf{u}_{1}, \mathbf{u}_{2}\right]$.
[This is exercise $1(\mathrm{e})$ on page 204 of the textbook.]

Solution. We know two ways to solve this problem.

Method 1 Since $L\left(\mathbf{u}_{1}\right)=\binom{0}{1}=\frac{1}{2} \mathbf{u}_{1}+\frac{1}{2} \mathbf{u}_{2}$, the first column of the matrix representing L with respect to the basis $\left[\mathbf{u}_{1}, \mathbf{u}_{2}\right]$ is $\binom{\frac{1}{2}}{\frac{1}{2}}$. Similarly, $L\left(\mathbf{u}_{2}\right)=\binom{0}{1}=\frac{1}{2} \mathbf{u}_{1}+\frac{1}{2} \mathbf{u}_{2}$, so the second column of the matrix is $\binom{\frac{1}{2}}{\frac{1}{2}}$. Thus the required matrix is $\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$.

Method 2 The matrix A representing L with respect to the standard basis is evidently $\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$. The matrix we seek is $S^{-1} A S$, where S is the transition matrix from the basis $\left[\mathbf{u}_{1}, \mathbf{u}_{2}\right]$ to the standard basis. This

Linear Algebra

transition matrix is $\left(\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right)$ (the columns are \mathbf{u}_{1} and \mathbf{u}_{2}), and a simple computation shows that $S^{-1}=\left(\begin{array}{rr}\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2}\end{array}\right)$. Thus

$$
S^{-1} A S=\left(\begin{array}{rr}
\frac{1}{2} & \frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2}
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right),
$$

the same answer as before.

