Linear Algebra

1. Use Gauss-Jordan reduction to bring the matrix

$$
\left(\begin{array}{rrrr}
1 & 1 & -1 & -1 \\
6 & 7 & -2 & 10 \\
7 & 8 & -4 & 5
\end{array}\right)
$$

to reduced echelon form.

Solution. Add -6 times the first row to the second row and -7 times the first row to the third row to obtain the matrix

$$
\left(\begin{array}{rrrr}
1 & 1 & -1 & -1 \\
0 & 1 & 4 & 16 \\
0 & 1 & 3 & 12
\end{array}\right) .
$$

Subtract the second row from both the third row and the first row to obtain the matrix

$$
\left(\begin{array}{rrrr}
1 & 0 & -5 & -17 \\
0 & 1 & 4 & 16 \\
0 & 0 & -1 & -4
\end{array}\right)
$$

Add 4 times the third row to the second row and -5 times the third row to the first row, and then multiply the third row by -1 to obtain the final answer:

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 4
\end{array}\right) .
$$

Linear Algebra

2. For which value(s) of the parameter a does the linear system

$$
\begin{aligned}
2 x_{2}-2 x_{3} & =3 \\
-6 x_{1}+8 x_{2}+x_{3} & =0 \\
2 x_{1}-a x_{3} & =4
\end{aligned}
$$

have infinitely many solutions for $\left(x_{1}, x_{2}, x_{3}\right)$?
Solution. One way to proceed is to move the bottom equation to the top and divide it by 2 to obtain the equivalent system

$$
\begin{aligned}
x_{1}-\frac{1}{2} a x_{3} & =2 \\
2 x_{2}-2 x_{3} & =3 \\
-6 x_{1}+8 x_{2}+\quad x_{3} & =0 .
\end{aligned}
$$

Now add 6 times the first equation to the third equation to obtain the equivalent system

$$
\begin{aligned}
x_{1}-\frac{1}{2} a x_{3} & =2 \\
2 x_{2}- & 2 x_{3}
\end{aligned}=3 .
$$

Subtracting 4 times the second equation from the third equation gives the equivalent system

$$
\begin{aligned}
x_{1}-\frac{1}{2} a x_{3} & =2 \\
2 x_{2}-\quad 2 x_{3} & =3 \\
(9-3 a) x_{3} & =0 .
\end{aligned}
$$

If $a \neq 3$, then the third equation implies that $x_{3}=0$. Back substitution shows that $x_{2}=\frac{3}{2}$ and $x_{1}=2$; hence the system has a unique solution.
On the other hand, if $a=3$, then the third equation disappears, and the system has infinitely many solutions: namely, $x_{1}=2+\frac{3}{2} x_{3}, x_{2}=\frac{3}{2}+x_{3}$, and the free variable x_{3} is arbitrary.

Thus the special value of the parameter a is 3 .

