Linear Algebra

1. Suppose

$$
A=\left(\begin{array}{lll}
3 & 0 & 4 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad A^{-1}=\left(\begin{array}{ccc}
1 / 3 & 0 & a \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Determine the value of a.
Solution. Multiply the two indicated matrices:

$$
\left(\begin{array}{lll}
3 & 0 & 4 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 / 3 & 0 & a \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 3 a+4 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

The matrix on the right-hand side is supposed to be the identity matrix, so $3 a+4=0$, or $a=-4 / 3$. (Alternatively, one could determine the value of a by using the algorithm for computing an inverse matrix.)
2. Write the column vector $\binom{-3}{2}$ as a linear combination of the vectors $\binom{1}{2}$ and $\binom{3}{4}$.

Solution. We want to solve the equation

$$
x_{1}\binom{1}{2}+x_{2}\binom{3}{4}=\binom{-3}{2}
$$

for x_{1} and x_{2}. An equivalent problem is to solve the linear system

$$
\begin{aligned}
x_{1}+3 x_{2} & =-3 \\
2 x_{1}+4 x_{2} & =2 .
\end{aligned}
$$

Subtracting 2 times the first equation from the second equation gives the equivalent system

$$
\begin{aligned}
x_{1}+3 x_{2} & =-3 \\
-2 x_{2} & =8 .
\end{aligned}
$$

Consequently, $x_{2}=-4$, and back substitution shows that $x_{1}=9$. Thus we can write

$$
9\binom{1}{2}-4\binom{3}{4}=\binom{-3}{2} .
$$

