Highlights

Math 304 Linear Algebra

Harold P. Boas

boas@tamu.edu

June 25, 2008

From last time:

 application of eigenvectors to systems of differential equations

Today:

diagonalization of matrices and applications

A visit to Diagon Alley

Suppose a linear operator *L* on R^3 is represented in a basis $[\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3]$ by the diagonal matrix $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix}$. This means that $L\mathbf{u}_1 = 2\mathbf{u}_1$ and $L\mathbf{u}_2 = 3\mathbf{u}_2$ and $L\mathbf{u}_3 = 5\mathbf{u}_3$. In other words, the basis vectors \mathbf{u}_1 , \mathbf{u}_2 , and \mathbf{u}_3 are eigenvectors of the operator *L*.

A square matrix *A* is *diagonalizable* if the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ can be represented in some basis by a diagonal matrix; in other words, if there is a basis consisting of eigenvectors of *A*; equivalently, if there is an invertible matrix *S* such that $S^{-1}AS$ is a diagonal matrix.

Example

Diagonalize the matrix $A = \begin{pmatrix} 2 & 4 \\ -1 & -3 \end{pmatrix}$. In other words, find an invertible matrix *S* and a diagonal matrix *D* such that $S^{-1}AS = D$ or, equivalently, $A = SDS^{-1}$. **Solution.** First find the eigenvalues and eigenvectors of *A*. Yesterday we saw that $\begin{pmatrix} 4 \\ -1 \end{pmatrix}$ is an eigenvector of *A* with eigenvalue 1, and $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ is an eigenvector with eigenvalue -2. The matrix $S = \begin{pmatrix} 4 & 1 \\ -1 & -1 \end{pmatrix}$ is the transition matrix from the eigenvector basis to the standard basis, and the matrix $S^{-1}AS$ is the diagonal matrix $\begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix}$. Continuation

If
$$A = \begin{pmatrix} 2 & 4 \\ -1 & -3 \end{pmatrix}$$
, find the power A^{1000} .

Solution. Since
$$S^{-}AS = D = \begin{pmatrix} 0 & -2 \end{pmatrix}$$
, and
 $D^{1000} = \begin{pmatrix} 1 & 0 \\ 0 & 2^{1000} \end{pmatrix}$, we have $A^{1000} = SD^{1000}S^{-1} = \begin{pmatrix} 4 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2^{1000} \end{pmatrix} \begin{pmatrix} -\frac{1}{3} \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 1 & 4 \end{pmatrix} = \begin{pmatrix} -\frac{1}{3} \end{pmatrix} \begin{pmatrix} -4 + 2^{1000} & -4 + 4 \times 2^{1000} \\ 1 - 2^{1000} & 1 - 4 \times 2^{1000} \end{pmatrix}$.

More. Since the exponential function is given by a power series $(e^x = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \dots + \frac{1}{n!}x^n + \dots)$, we can write $e^A := I + A + \frac{1}{2!}A^2 + \dots = Se^DS^{-1} = S\begin{pmatrix} e^1 & 0\\ 0 & e^{-2} \end{pmatrix}S^{-1}$ $= \begin{pmatrix} -\frac{1}{3} \end{pmatrix} \begin{pmatrix} -4e + e^{-2} & -4e + 4e^{-2}\\ e - e^{-2} & e - 4e^{-2} \end{pmatrix}$.

Application to differential equations

We have two ways to solve the system of differential equations $\mathbf{y}' = \begin{pmatrix} 2 & 4 \\ -1 & -3 \end{pmatrix} \mathbf{y}.$ (a) From yesterday, we can write the general solution as $\mathbf{y}(t) = c_1 e^t \begin{pmatrix} 4 \\ -1 \end{pmatrix} + c_2 e^{-2t} \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$ (b) With a different choice of c_1 and c_2 , we can write $\mathbf{y}(t) = e^{tA} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = Se^{tD}S^{-1} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} =$ $\begin{pmatrix} -\frac{1}{3} \end{pmatrix} \begin{pmatrix} -4e^t + e^{-2t} & -4e^t + 4e^{-2t} \\ e^t - e^{-2t} & e^t - 4e^{-2t} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}.$ In the second form, $\begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} y_1(0) \\ y_2(0) \end{pmatrix}.$