

Highlights

From last time:

- application of eigenvectors to systems of differential equations
Today:
- diagonalization of matrices and applications

Example

Diagonalize the matrix $A=\left(\begin{array}{rr}2 & 4 \\ -1 & -3\end{array}\right)$. In other words, find an invertible matrix S and a diagonal matrix D such that $S^{-1} A S=D$ or, equivalently, $A=S D S^{-1}$.
Solution. First find the eigenvalues and eigenvectors of A. Yesterday we saw that $\binom{4}{-1}$ is an eigenvector of A with eigenvalue 1 , and $\binom{1}{-1}$ is an eigenvector with eigenvalue -2 .
The matrix $S=\left(\begin{array}{rr}4 & 1 \\ -1 & -1\end{array}\right)$ is the transition matrix from the eigenvector basis to the standard basis, and the matrix $S^{-1} A S$ is the diagonal matrix $\left(\begin{array}{rr}1 & 0 \\ 0 & -2\end{array}\right)$.

Continuation

If $A=\left(\begin{array}{rr}2 & 4 \\ -1 & -3\end{array}\right)$, find the power A^{1000}.
Solution. Since $S^{-1} A S=D=\left(\begin{array}{rr}1 & 0 \\ 0 & -2\end{array}\right)$, and $D^{1000}=\left(\begin{array}{cc}1 & 0 \\ 0 & 2^{1000}\end{array}\right)$, we have $A^{1000}=S D^{1000} S^{-1}=$
$\left(\begin{array}{rr}4 & 1 \\ -1 & -1\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ 0 & 2^{1000}\end{array}\right)\left(\begin{array}{c}-\frac{1}{3}\end{array}\right)\left(\begin{array}{rr}-1 & -1 \\ 1 & 4\end{array}\right)=$ $\left(-\frac{1}{3}\right)\left(\begin{array}{rr}-4+2^{1000} & -4+4 \times 2^{1000} \\ 1-2^{1000} & 1-4 \times 2^{1000}\end{array}\right)$.

More. Since the exponential function is given by a power series $\left(e^{x}=1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\cdots+\frac{1}{n!} x^{n}+\cdots\right)$, we can write
$e^{A}:=I+A+\frac{1}{2!} A^{2}+\cdots=S e^{D} S^{-1}=S\left(\begin{array}{cc}e^{1} & 0 \\ 0 & e^{-2}\end{array}\right) S^{-1}$
$=\left(-\frac{1}{3}\right)\left(\begin{array}{cr}-4 e+e^{-2} & -4 e+4 e^{-2} \\ e-e^{-2} & e-4 e^{-2}\end{array}\right)$.

Application to differential equations

We have two ways to solve the system of differential equations $\mathbf{y}^{\prime}=\left(\begin{array}{rr}2 & 4 \\ -1 & -3\end{array}\right) \mathbf{y}$.
(a) From yesterday, we can write the general solution as $\mathbf{y}(t)=c_{1} e^{t}\binom{4}{-1}+c_{2} e^{-2 t}\binom{1}{-1}$.
(b) With a different choice of c_{1} and c_{2}, we can write $\mathbf{y}(t)=e^{t A}\binom{c_{1}}{c_{2}}=S e^{t D} S^{-1}\binom{c_{1}}{c_{2}}=$
$\left(-\frac{1}{3}\right)\left(\begin{array}{cc}-4 e^{t}+e^{-2 t} & -4 e^{t}+4 e^{-2 t} \\ e^{t}-e^{-2 t} & e^{t}-4 e^{-2 t}\end{array}\right)\binom{c_{1}}{c_{2}}$.
In the second form, $\binom{c_{1}}{c_{2}}=\binom{y_{1}(0)}{y_{2}(0)}$.

