
Math 304 Examination 1

Linear Algebra
Summer 2008

Write your name: Answer Key (2 points).

In problems 1–5, circle the correct answer. (5 points per problem)

1. If the product AB of two matrices A and B is the zero matrix, then
either A or B (or both) must be the zero matrix. True False

Solution. False. Here are two counterexamples:(
1 0
0 0

)(
0 0
0 1

)
=

(
0 0
0 0

)
and

(
1 2
1 2

)(
2 2
−1 −1

)
=

(
0 0
0 0

)
.

2. If A is a 4×5 matrix and b is a 4×1 matrix (that is, a column vector),
then the linear system Ax = b must have infinitely many solutions
for x. True False

Solution. False. We know that a linear system has either (a) no
solution, (b) exactly one solution, or (c) infinitely many solutions. Here
we have an underdetermined system (more variables than equations),
so we can rule out case (b), but we cannot rule out case (a). For
example, if all the columns of the matrix A are equal, but the column
vector b is a different vector, then the system is inconsistent.

3. If A and B are 3 × 3 matrices such that det(A) = det(B), then the
matrices A and B must be the same. True False

Solution. False. See the solution to problem 6 for a counterexample.

4. If A is a singular 3 × 3 matrix, then the homogeneous linear system
Ax = 0 must have nontrivial solutions. True False

Solution. True. The contrapositive statement is a part of Theo-
rem 1.4.2 on page 65 of the textbook.

A homogeneous system is always consistent. If A is nonsingular, then
the trivial solution is the only solution. If A is singular, then the
echelon form will have a row of zeroes at the bottom, there will be a
free variable, and the system will have infinitely many solutions.
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5. If n vectors v1, v2, . . . , vn are a spanning set for the vector space Rn,
then they must also be a linearly independent set. True False

Solution. True. If the vectors were linearly dependent, then one
would be a linear combination of the others, so we could discard that
vector and still have a spanning set. That is impossible, because the
vector space Rn has dimension n: the space cannot have a spanning
set consisting of n− 1 vectors.

In problems 6–9, fill in the blanks. (7 points per problem)

6. det


1 2

0 3

0 0

 = 10. (There are many correct answers.)

Solution. The determinant of a triangular matrix is the product of the
elements on the diagonal, so you need to put numbers on the diagonal
whose product equals 10. For example,1 1 2

0 2 3
0 0 5

 or

1 1 2
0 1 3
0 0 10

 or

10 1 2
0 10 3
0 0 1/10

 .

7. If A =

(
1 2 3
4 5 6

)
and AB =

(
10 2 3
40 5 6

)
, then B =


.

Solution. First observe that B must be a 3× 3 matrix. Next observe
that the third column of AB equals the third column of A, the second
column of AB equals the second column of A, and the first column
of AB equals 10 times the first column of A. This effect is achieved by
multiplying A on the right by a certain elementary matrix: namely,

B =

10 0 0
0 1 0
0 0 1

 .
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8. Let V be a vector space. The number of vectors in a basis for V is
called the dimension of the vector space V .

9. Suppose A =

(
1 5
2 11

)
=

(
1 0
2 1

)(
1 5
0 1

)
. (This is an LU factorization

for A.) The transpose matrix AT can be written as the product of a
lower triangular matrix times an upper triangular matrix as follows:

AT =

 1 0

1

 1

0 1

.

Solution. The transpose of a product is the product of the transposes
in reverse order, so you can immediately write down that

AT =

(
1 0
5 1

)(
1 2
0 1

)
.

Alternatively, you can work out the LU factorization of

(
1 2
5 11

)
from

scratch.
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In problems 10–12, show your work and explain your method. Continue
on the back if you need more space. (15 points per problem)

10. Consider the system of simultaneous equations
x1 + x2 + 2x3 = 1

2x1 + x2 + 3x3 = 2

4x1 + 2x2 + 6x3 = k

for the unknowns x1, x2, and x3. For which value(s) of k does this
system have infinitely many solutions?

Solution. Use Gaussian elimination to bring the augmented coefficient
matrix to row echelon form:1 1 2

2 1 3
4 2 6

∣∣∣∣∣∣
1
2
k

 R2→R2−2R1−−−−−−−→
R3→R3−4R1

1 1 2
0 −1 −1
0 −2 −2

∣∣∣∣∣∣
1
0

k − 4


R2→−R2−−−−−−−→

R3→R3+2R2

1 1 2
0 1 1
0 0 0

∣∣∣∣∣∣
1
0

k − 4

 .

If k 6= 4, then the system is inconsistent and has no solution. If k = 4,
then the system is consistent and has x3 as a free variable, so there are
infinitely many solutions.
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11. Find a basis for the null space of the matrix

1 0 1 0
1 2 3 4
1 −1 0 −2

.

Solution. Use Gaussian elimination to bring the augmented coefficient
matrix to row echelon form:1 0 1 0

1 2 3 4
1 −1 0 −2

∣∣∣∣∣∣
0
0
0

 R2→R2−R1−−−−−−−→
R3→R3−R1

1 0 1 0
0 2 2 4
0 −1 −1 −2

∣∣∣∣∣∣
0
0
0


R2→ 1

2
R2

−−−−−−−→
R3→R3+R2

1 0 1 0
0 1 1 2
0 0 0 0

∣∣∣∣∣∣
0
0
0

 .

Now you can read off that x3 and x4 are free variables, x1 = −x3, and
x2 = −x3 − 2x4. Therefore the general element in the null space can
be expressed in the form

−x3

−x3 − 2x4

x3

x4

 or x3


−1
−1

1
0

+ x4


0
−2

0
1

 ,

where x3 and x4 are arbitrary. The two vectors
−1
−1

1
0

 and


0
−2

0
1


form a basis for the null space of the matrix.
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12. Suppose A =


1 1 1

2 3 2

 and A−1 =


4 0

1

.

Fill in the missing entries, and explain your strategy for finding them.

Solution. The thematic approach is to compute the inverse matrix
by using row operations, although the missing entries cause some com-
plications. It is, however, possible to solve the problem using nothing
more than the knowledge of how matrix multiplication works.

Method 1 To avoid introducing nine variables for the nine unknown
entries, let an asterisk mean, “I don’t know the value of this entry.”
Thus asterisks in two different places may represent two different (un-
known) numbers. As usual, start the algorithm for finding an inverse
matrix by working on the first column of an augmented matrix:1 1 1

2 3 2
∗ ∗ ∗

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

 R2→R2−2R1−−−−−−−→
R3→R3−∗R1

1 1 1
0 1 0
0 ∗ ∗

∣∣∣∣∣∣
1 0 0
−2 1 0
∗ 0 1

 .

Next work on the second column:

R1→R1−R2−−−−−−−→
R3→R3−∗R2

1 0 1
0 1 0
0 0 ∗

∣∣∣∣∣∣
3 −1 0
−2 1 0
∗ ∗ 1

 .

Since we know that the matrix A is invertible, the unknown entry in
position 33 cannot be 0, so we can divide it out:

R3→(1/∗)R3−−−−−−−→

1 0 1
0 1 0
0 0 1

∣∣∣∣∣∣
3 −1 0
−2 1 0
∗ ∗ ∗

 .

Now we can perform the final step in the algorithm for finding the
inverse matrix:

R1→R1−R3−−−−−−−→

1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
∗ ∗ ∗
−2 1 0
∗ ∗ ∗

 .
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We have not yet completely solved the problem, but we now know the
middle row of A−1. Putting this information together with what was
given, we have

A−1 =

 4 0 ∗
−2 1 0
∗ ∗ 1

 .

Since A times A−1 equals the identity matrix, we have the following
matrix equation:1 1 1

2 3 2
∗ ∗ ∗

 4 0 ∗
−2 1 0
∗ ∗ 1

 =

1 0 0
0 1 0
0 0 1

 .

You can read off the three missing entries in A−1 by looking at the
products that correspond to the entries on the top row of the identity
matrix. For instance,

(
1 1 1

) 4
−2
∗

 = 1,

so the missing entry in position 31 of the matrix A−1 equals −1. Ar-
guing similarly for the other two missing entries shows that

A−1 =

 4 0 −1
−2 1 0
−1 −1 1

 .

Now A−1A equals the identity matrix, so 4 0 −1
−2 1 0
−1 −1 1

1 1 1
2 3 2
∗ ∗ ∗

 =

1 0 0
0 1 0
0 0 1

 .

You can read off the missing entries in A by again looking at the prod-
ucts that correspond to the entries on the top row of the identity matrix:

A =

1 1 1
2 3 2
3 4 4

 .
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Method 2 (sketch) Give the missing entries of A symbolic names:1 1 1
2 3 2
x y z

 .

Now run the algorithm for finding A−1, keeping track of all the entries.
If you are good with algebra, or if you have a calculator that is suffi-
ciently sophisticated to produce the inverse of a symbolic matrix, you
will find that

A−1 =


2y − 3z

x− z

z − y

x− z

1

x− z
−2 1 0

3x− 2y

x− z

y − x

x− z

−1

x− z

 .

[Remark: det(A) = z − x.]

Comparing this symbolic inverse with the three given entries of A−1

produces three equations for the three unknowns x, y, and z. Solve
these equations and substitute the values for x, y, and z back into the
symbolic form of A−1.

Now A−1 is completely known. Proceed as in Method 1 to find the
missing entries of A by using that A−1A = I.

Method 3 (sketch) Give the six missing entries of A−1 symbolic
names. Using the known first two rows of A and the knowledge that
AA−1 = I produces six equations for these six unknowns. These equa-
tions are actually easy to solve, because they split up into three pairs
of equations, each pair involving only two of the unknowns.

After solving the three sets of two equations in two unknowns, you have
all the entries of A−1. As was the case in Methods 1 and 2, it is easy
to get the three missing entries of A by using that A−1A = I.
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