## Linear Algebra

Write your name: $\qquad$ (2 points).
In problems $\mathbf{1 - 5}$, circle the correct answer. ( 5 points per problem)

1. If the product $A B$ of two matrices $A$ and $B$ is the zero matrix, then either $A$ or $B$ (or both) must be the zero matrix. True False
2. If $A$ is a $4 \times 5$ matrix and $\mathbf{b}$ is a $4 \times 1$ matrix (that is, a column vector), then the linear system $A \mathbf{x}=\mathbf{b}$ must have infinitely many solutions for $\mathbf{x}$. True False
3. If $A$ and $B$ are $3 \times 3$ matrices such that $\operatorname{det}(A)=\operatorname{det}(B)$, then the matrices $A$ and $B$ must be the same. True False
4. If $A$ is a singular $3 \times 3$ matrix, then the homogeneous linear system $A \mathbf{x}=\mathbf{0}$ must have nontrivial solutions. True False
5. If $n$ vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ are a spanning set for the vector space $R^{n}$, then they must also be a linearly independent set. True False

In problems 6-9, fill in the blanks. ( 7 points per problem)
6. $\operatorname{det}\left(\begin{array}{ccc}\square & 1 & 2 \\ 0 & \square & 3 \\ 0 & 0 & \square\end{array}\right)=10$. (There are many correct answers.)
7. If $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)$ and $A B=\left(\begin{array}{lll}10 & 2 & 3 \\ 40 & 5 & 6\end{array}\right)$, then $B=(\square)$.
8. Let $V$ be a vector space. The number of vectors in a basis for $V$ is called the $\qquad$ of the vector space $V$.
9. Suppose $A=\left(\begin{array}{cc}1 & 5 \\ 2 & 11\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right)\left(\begin{array}{ll}1 & 5 \\ 0 & 1\end{array}\right)$. (This is an $L U$ factorization for $A$.) The transpose matrix $A^{T}$ can be written as the product of a lower triangular matrix times an upper triangular matrix as follows: $A^{T}=\left(\begin{array}{cc}1 & 0 \\ \square & 1\end{array}\right)\left(\begin{array}{cc}1 & \square \\ 0 & 1\end{array}\right)$.

## Linear Algebra

In problems 10-12, show your work and explain your method. Continue on the back if you need more space. (15 points per problem)
10. Consider the system of simultaneous equations

$$
\left\{\begin{aligned}
x_{1}+x_{2}+2 x_{3} & =1 \\
2 x_{1}+x_{2}+3 x_{3} & =2 \\
4 x_{1}+2 x_{2}+6 x_{3} & =k
\end{aligned}\right.
$$

for the unknowns $x_{1}, x_{2}$, and $x_{3}$. For which value(s) of $k$ does this system have infinitely many solutions?

Math 304

## Examination 1 <br> Linear Algebra

Summer 2008
11. Find a basis for the null space of the matrix $\left(\begin{array}{rrrr}1 & 0 & 1 & 0 \\ 1 & 2 & 3 & 4 \\ 1 & -1 & 0 & -2\end{array}\right)$.

## Linear Algebra

12. Suppose $A=\left(\begin{array}{ccc}1 & 1 & 1 \\ 2 & 3 & 2 \\ \square & \square & \square\end{array}\right)$ and $A^{-1}=\left(\begin{array}{ccc}4 & 0 & \square \\ \square & \square & \square \\ \square & \square & 1\end{array}\right)$.

Fill in the missing entries, and explain your strategy for finding them.

