Linear Algebra

Instructions Please write your name in the upper right-hand corner of the page. Circle the correct answer in each of the following items.

1. The set of vectors $\left\{\binom{1}{-1},\binom{1}{1}\right\} \begin{gathered}\text { True }\end{gathered} \underset{\text { False }}{\text { forms an orthonormal basis for } R^{2} .}$
2. In the space $C[-\pi, \pi]$ of continuous functions on the interval $[-\pi, \pi]$ equipped with the inner product

$$
\langle f(x), g(x)\rangle=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) g(x) d x
$$

the functions $\sin (x)$ and $\cos (x)$ are orthogonal. True False
3. In a vector space that is equipped with a norm, the distance between vectors \mathbf{x} and \mathbf{y} is defined to be $\|\mathbf{y}-\mathbf{x}\|$. True False
4. Every orthogonal matrix is invertible. True False
5. For every pair of vectors \mathbf{u} and \mathbf{v} in an inner product space, the following inequality holds: $|\langle\mathbf{u}, \mathbf{v}\rangle| \leq\|\mathbf{u}\|\|\mathbf{v}\|$. True False

