## Linear Algebra

Instructions Please write your name in the upper right-hand corner of the page. Use complete sentences, along with any necessary supporting calculations, to answer the following questions.

1. Find the orthogonal complement of the subspace of $R^{3}$ spanned by the two vectors $\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$ and $\left(\begin{array}{r}1 \\ -1 \\ 2\end{array}\right)$.
[This is exercise 3(b) on page 233 of the textbook.]

Solution. The two given vectors span a two-dimensional subspace of $R^{3}$, so the orthogonal complement is a one-dimensional subspace of $R^{3}$. To identify this one-dimensional subspace, we need to find a (nontrivial) vector that is orthogonal to both of the given vectors.

Method 1 We can solve the problem by finding the null space of the $2 \times 3$ matrix that has the given vectors as rows. Use Gaussian elimination:

$$
\begin{gathered}
\left(\begin{array}{rrr|r}
1 & 2 & 1 & 0 \\
1 & -1 & 2 & 0
\end{array}\right) \xrightarrow{R 2 \rightarrow R 2-R 1}\left(\begin{array}{rrr|r}
1 & 2 & 1 & 0 \\
0 & -3 & 1 & 0
\end{array}\right) \\
\xrightarrow{R 2 \rightarrow(-1 / 3) R 2}\left(\begin{array}{rrc|l}
1 & 2 & 1 & 0 \\
0 & 1 & -1 / 3 & 0
\end{array}\right) \xrightarrow{R 1 \rightarrow R 1-2 R 2}\left(\begin{array}{rrrr}
1 & 0 & 5 / 3 & 0 \\
0 & 1 & -1 / 3 & 0
\end{array}\right) .
\end{gathered}
$$

The deduction from this calculation is that $x_{3}$ is a free variable, $x_{2}=$ $(1 / 3) x_{3}$, and $x_{1}=-(5 / 3) x_{3}$. Therefore vectors in the null space have the form $\left(\begin{array}{c}-(5 / 3) x_{3} \\ (1 / 3) x_{3} \\ x_{3}\end{array}\right)$, where $x_{3}$ is arbitrary. In other words, the vector $\left(\begin{array}{c}-5 / 3 \\ 1 / 3 \\ 1\end{array}\right)$ is a basis for the orthogonal complement that we seek. Any nontrivial scalar multiple of this vector would do as well, so we could clear the fractions and use either the vector $\left(\begin{array}{r}-5 \\ 1 \\ 3\end{array}\right)$ or its negative as a basis vector of our one-dimensional subspace.

## Linear Algebra

Method 2 Since the problem is set in $R^{3}$, there is a special device available to find a vector orthogonal to two given vectors. You learned in calculus class about the vector cross product, which produces a particular vector orthogonal to two given vectors. Using the standard basis vectors $\mathbf{i}, \mathbf{j}$, and $\mathbf{k}$, you get the cross product by computing the determinant
$\left|\begin{array}{rrr}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 1 \\ 1 & -1 & 2\end{array}\right|$
via cofactor expansion across the top row. The result is $5 \mathbf{i}-\mathbf{j}-3 \mathbf{k}$. The corresponding vector is $\left(\begin{array}{r}5 \\ -1 \\ -3\end{array}\right)$, a scalar multiple of the vector found by Method 1.

Remark The cross product exists only in $R^{3}$, so if you had an analogous problem in $R^{4}$, then you would have to use Method 1.

## Linear Algebra

2. Find a least-squares solution to the inconsistent linear system

$$
\begin{aligned}
& x_{1}+x_{2}=3 \\
& x_{1}-x_{2}=0 \\
& x_{1}+0 x_{2}=4 .
\end{aligned}
$$

Solution. The corresponding matrix equation is

$$
\left(\begin{array}{rr}
1 & 1 \\
1 & -1 \\
1 & 0
\end{array}\right)\binom{x_{1}}{x_{2}}=\left(\begin{array}{l}
3 \\
0 \\
4
\end{array}\right) .
$$

Multiplying both sides by the transpose matrix $\left(\begin{array}{rrr}1 & 1 & 1 \\ 1 & -1 & 0\end{array}\right)$ gives the consistent linear system

$$
\left(\begin{array}{ll}
3 & 0 \\
0 & 2
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{7}{3} .
$$

Since the matrix on the left-hand side is diagonal, you can immediately read off the unique least-squares solution $x_{1}=7 / 3$ and $x_{2}=3 / 2$.

