Linear Algebra

Instructions Please write your name in the upper right-hand corner of the page. Circle the correct answer in each of the following items.

1. The set of vectors $\left\{\binom{1}{-1},\binom{1}{1}\right\} \begin{gathered}\text { True }\end{gathered} \underset{\text { False }}{\text { forms an orthonormal basis for } R^{2} .}$

Solution. False. The vectors are orthogonal to each other, but they are not normalized to length 1.
2. In the space $C[-\pi, \pi]$ of continuous functions on the interval $[-\pi, \pi]$ equipped with the inner product

$$
\langle f(x), g(x)\rangle=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) g(x) d x
$$

the functions $\sin (x)$ and $\cos (x)$ are orthogonal. True False
Solution. True. This orthogonality is a basic example discussed in class and in the textbook on page 265 . To verify that

$$
\frac{1}{\pi} \int_{-\pi}^{\pi} \sin (x) \cos (x) d x=0
$$

observe that $\frac{1}{2}(\sin (x))^{2}$ is an anti-derivative of $\sin (x) \cos (x)$.
3. In a vector space that is equipped with a norm, the distance between vectors \mathbf{x} and \mathbf{y} is defined to be $\|\mathbf{y}-\mathbf{x}\|$. True False

Solution. True. The statement is the boxed definition on page 252 of the textbook.
4. Every orthogonal matrix is invertible. True False

Solution. True. A property equivalent to the definition of orthogonal matrix is that the transpose matrix is equal to the inverse matrix; hence the inverse matrix must exist! See the box on page 259 of the textbook.

Linear Algebra

5. For every pair of vectors \mathbf{u} and \mathbf{v} in an inner product space, the following inequality holds: $|\langle\mathbf{u}, \mathbf{v}\rangle| \leq\|\mathbf{u}\|\|\mathbf{v}\|$. True False

Solution. True. This inequality is the famous Cauchy-Schwarz inequality. The inequality is what makes it sensible to define the angle θ between two vectors by the formula

$$
\langle\mathbf{u}, \mathbf{v}\rangle=\|\mathbf{u}\|\|\mathbf{v}\| \cos (\theta)
$$

See Theorem 5.4.2 on page 249 of the textbook.

