Linear Algebra

Instructions Please write your name in the upper right-hand corner of the page. Use complete sentences, along with any necessary supporting calculations, to answer the following questions.

1. Find a 2×2 matrix A that has the vectors $\binom{1}{0}$ and $\binom{2}{1}$ as eigenvectors with corresponding eigenvalues 3 and 4 .

Solution. This problem can be solved in at least two ways.

Method 1: solution from first principles. If $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then the given information tells us that

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{1}{0}=\binom{3}{0} \quad \text { and } \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{2}{1}=\binom{8}{4} .
$$

The first equation says that

$$
\binom{a}{c}=\binom{3}{0} .
$$

The second equation says that

$$
\begin{aligned}
& \quad 2\binom{a}{c}+\binom{b}{d}=\binom{8}{4}, \quad \text { or } \quad\binom{6}{0}+\binom{b}{d}=\binom{8}{4}, \\
& \text { so }\binom{b}{d}=\binom{2}{4} . \text { Hence } A=\left(\begin{array}{ll}
3 & 2 \\
0 & 4
\end{array}\right) .
\end{aligned}
$$

Method 2: the thematic approach. Multiplication by the ma$\operatorname{trix} A$ defines a linear operator on R^{2}. This operator is represented in the eigenvector basis by the diagonal matrix $D=\left(\begin{array}{ll}3 & 0 \\ 0 & 4\end{array}\right)$. The transition matrix S from the eigenvector basis to the standard basis has the eigenvectors as its columns:

$$
S=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) .
$$

Linear Algebra

Now $S^{-1} A S=D$, so

$$
A=S D S^{-1}=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
3 & 0 \\
0 & 4
\end{array}\right)\left(\begin{array}{rr}
1 & -2 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
3 & 2 \\
0 & 4
\end{array}\right) .
$$

2. If a 2×2 matrix A has the numbers 1 and 3 as eigenvalues, and a 2×2 matrix B has the numbers 1 and 4 as eigenvalues, must the product matrix $A B$ have the numbers 1 and 12 as eigenvalues? Explain why or why not.

Solution. The statement will hold if the matrices A and B have the same eigenvectors, but there is no reason to expect the product $A B$ to be special if the eigenvectors of A and B do not match. Here are some examples showing that $A B$ can have eigenvalues different from 1 and 12.
If $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right)$ and $B=\left(\begin{array}{ll}4 & 0 \\ 0 & 1\end{array}\right)$, then A and B have the required eigenvalues, but

$$
A B=\left(\begin{array}{ll}
4 & 0 \\
0 & 3
\end{array}\right)
$$

which has eigenvalues 4 and 3 .
If $A=\left(\begin{array}{ll}1 & 5 \\ 0 & 3\end{array}\right)$ and $B=\left(\begin{array}{rr}1 & 0 \\ -1 & 4\end{array}\right)$, then A and B have the required eigenvalues, but

$$
A B=\left(\begin{array}{ll}
-4 & 20 \\
-3 & 12
\end{array}\right)
$$

which has eigenvalues 2 and 6 .
Recall that the product of the eigenvalues of a matrix equals the determinant, and the sum of the eigenvalues equals the trace. If $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right)$ and $B=\left(\begin{array}{rr}-2 & -6 \\ 3 & 7\end{array}\right)$, then A and B have the required eigenvalues (notice that $\operatorname{det}(B)=4$ and $\operatorname{trace}(B)=5)$, but

$$
A B=\left(\begin{array}{rr}
-2 & -6 \\
9 & 21
\end{array}\right)
$$

and $\operatorname{trace}(A B)=19 \neq 13$, so $A B$ does not have eigenvalues 1 and 12 .

