Linear Algebra

Instructions Please write your name in the upper right-hand corner of the page. Use complete sentences, along with any necessary supporting calculations, to answer the following questions.

1. Fill in the four blanks in the following matrix product:

$$
\left(\begin{array}{cc}
\square & 0 \\
\square & 0
\end{array}\right)\left(\begin{array}{ll}
0 & \square \\
2 & 3 \\
4 & 5
\end{array}\right)=\left(\begin{array}{cc}
16 & 23 \\
0 & 1
\end{array}\right)
$$

Solution. This problem is simple enough to write down the answer by inspection, but here is a systematic procedure for working out the answer.
Write the first matrix as $\left(\begin{array}{lll}a & 0 & b \\ c & 0 & d\end{array}\right)$, where the values of a, b, c, and d are to be found. Carrying out the matrix multiplication shows that

$$
\left(\begin{array}{cc}
4 b & a+5 b \\
4 d & c+5 d
\end{array}\right)=\left(\begin{array}{cc}
16 & 23 \\
0 & 1
\end{array}\right) .
$$

Matching the corresponding entries on the two sides gives a linear system of four equations in four unknowns, but the equations are so simple that there is no point in setting up a 4×4 matrix. Comparing the first columns above shows that $b=4$ and $d=0$. Comparing the second columns and using the already determined values for b and d shows that $a=3$ and $c=1$.
Thus the unknown matrix is $\left(\begin{array}{lll}3 & 0 & 4 \\ 1 & 0 & 0\end{array}\right)$.

Linear Algebra

2. Write the vector $\binom{-4}{6}$ as a linear combination of the two vectors $\binom{1}{2}$ and $\binom{3}{4}$. In other words, find numbers x_{1} and x_{2} such that

$$
x_{1}\binom{1}{2}+x_{2}\binom{3}{4}=\binom{-4}{6} .
$$

Solution. We have to solve a linear system for which the augmented matrix is

$$
\left(\begin{array}{ll|r}
1 & 3 & -4 \\
2 & 4 & 6
\end{array}\right) .
$$

Subtracting twice the first row from the second row gives the matrix

$$
\left(\begin{array}{rr|r}
1 & 3 & -4 \\
0 & -2 & 14
\end{array}\right)
$$

From the bottom row, we see that $x_{2}=-7$. Substituting back into the first row, we see that $x_{1}-21=-4$, so $x_{1}=17$. Thus

$$
17\binom{1}{2}-7\binom{3}{4}=\binom{-4}{6} .
$$

