Linear Algebra

Instructions Please write your name in the upper right-hand corner of the page. Use complete sentences, along with any necessary supporting calculations, to answer the following questions.

1. Find a spanning set for the null space of the matrix $\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 1 & 0 & 8\end{array}\right)$.

Solution. You can find the null space by bringing the augmented matrix

$$
\left(\begin{array}{llll|l}
1 & 2 & 3 & 4 & 0 \\
2 & 1 & 0 & 8 & 0
\end{array}\right)
$$

to row echelon form. Subtracting twice the first row from the second row gives

$$
\left(\begin{array}{rrrr|r}
1 & 2 & 3 & 4 & 0 \\
0 & -3 & -6 & 0 & 0
\end{array}\right) .
$$

Dividing the second row by -3 gives

$$
\left(\begin{array}{llll|l}
1 & 2 & 3 & 4 & 0 \\
0 & 1 & 2 & 0 & 0
\end{array}\right) .
$$

Subtracting twice the second row from the first row gives

$$
\left(\begin{array}{rrrr|r}
1 & 0 & -1 & 4 & 0 \\
0 & 1 & 2 & 0 & 0
\end{array}\right) .
$$

From this reduced row echelon form you can read off that x_{3} and x_{4} are free variables, $x_{2}=-2 x_{3}$, and $x_{1}=x_{3}-4 x_{4}$. The null space consists of all vectors of the form

$$
\left(\begin{array}{c}
x_{3}-4 x_{4} \\
-2 x_{3} \\
x_{3} \\
x_{4}
\end{array}\right) \quad \text { or } \quad x_{3}\left(\begin{array}{r}
1 \\
-2 \\
1 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{r}
-4 \\
0 \\
0 \\
1
\end{array}\right)
$$

where the free variables x_{3} and x_{4} can take any value. Therefore a spanning set for the null space is the pair of vectors

$$
\left(\begin{array}{r}
1 \\
-2 \\
1 \\
0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{r}
-4 \\
0 \\
0 \\
1
\end{array}\right) .
$$

Linear Algebra

2. In the vector space $C[0,1]$ of continuous functions on the interval $[0,1]$, consider the set of functions f such that $\int_{0}^{1} f(x) d x=1$. Is this subset of $C[0,1]$ a subspace? Explain why or why not.

Solution. A subset of a vector space is a subspace if it is closed under addition and under multiplication by scalars (page 124 in the textbook). The indicated set is closed under neither operation, so it is not a subspace.
Indeed, if $\int_{0}^{1} f_{1}(x) d x=1$ and $\int_{0}^{1} f_{2}(x) d x=1$, then

$$
\int_{0}^{1}\left[f_{1}(x)+f_{2}(x)\right] d x=\int_{0}^{1} f_{1}(x) d x+\int_{0}^{1} f_{2}(x) d x=1+1=2 \neq 1
$$

so the function $f_{1}+f_{2}$ does not lie in the set: closure under addition fails. Moreover, if c is any scalar different from 1, and $\int_{0}^{1} f(x) d x=1$, then

$$
\int_{0}^{1} c f(x) d x=c \int_{0}^{1} f(x) d x=c \cdot 1=c \neq 1,
$$

so the function $c f$ does not lie in the set: closure under scalar multiplication fails.

