Quiz 5 Linear Algebra

Instructions Please write your name in the upper right-hand corner of the page. Use complete sentences, along with any necessary supporting calculations, to answer the following questions.

1. Find a spanning set for the null space of the matrix $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 0 & 8 \end{pmatrix}$.

Solution. You can find the null space by bringing the augmented matrix

				0
$\backslash 2$	1	0	8	0)

to row echelon form. Subtracting twice the first row from the second row gives

 $\begin{pmatrix} 1 & 2 & 3 & 4 & | & 0 \\ 0 & -3 & -6 & & 0 & | & 0 \end{pmatrix}.$

Dividing the second row by -3 gives

(1)	2	3	4	0)
$\left(0 \right)$	1	2	0	$\begin{pmatrix} 0\\ 0 \end{pmatrix}$.

Subtracting twice the second row from the first row gives

$$\begin{pmatrix} 1 & 0 & -1 & 4 & 0 \\ 0 & 1 & 2 & 0 & 0 \end{pmatrix}.$$

From this reduced row echelon form you can read off that x_3 and x_4 are free variables, $x_2 = -2x_3$, and $x_1 = x_3 - 4x_4$. The null space consists of all vectors of the form

$$\begin{pmatrix} x_3 - 4x_4 \\ -2x_3 \\ x_3 \\ x_4 \end{pmatrix} \quad \text{or} \quad x_3 \begin{pmatrix} 1 \\ -2 \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} -4 \\ 0 \\ 0 \\ 1 \end{pmatrix},$$

where the free variables x_3 and x_4 can take any value. Therefore a spanning set for the null space is the pair of vectors

$$\begin{pmatrix} 1\\ -2\\ 1\\ 0 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} -4\\ 0\\ 0\\ 1 \end{pmatrix}.$$

Summer 2008

Quiz 5 Linear Algebra

2. In the vector space C[0, 1] of continuous functions on the interval [0, 1], consider the set of functions f such that $\int_0^1 f(x) dx = 1$. Is this subset of C[0, 1] a subspace? Explain why or why not.

Solution. A subset of a vector space is a subspace if it is closed under addition and under multiplication by scalars (page 124 in the textbook). The indicated set is closed under neither operation, so it is not a subspace.

Indeed, if $\int_0^1 f_1(x) dx = 1$ and $\int_0^1 f_2(x) dx = 1$, then

$$\int_0^1 [f_1(x) + f_2(x)] \, dx = \int_0^1 f_1(x) \, dx + \int_0^1 f_2(x) \, dx = 1 + 1 = 2 \neq 1,$$

so the function $f_1 + f_2$ does not lie in the set: closure under addition fails. Moreover, if c is any scalar different from 1, and $\int_0^1 f(x) dx = 1$, then

$$\int_0^1 cf(x) \, dx = c \int_0^1 f(x) \, dx = c \cdot 1 = c \neq 1,$$

so the function cf does not lie in the set: closure under scalar multiplication fails.