Math 304

Page 1 of 2

Dr. Boas

and then transpose the result. This method produces a basis for the column space consisting of the two vectors
$$\begin{pmatrix} 1\\0\\1 \end{pmatrix}$$
 and $\begin{pmatrix} 0\\1\\1 \end{pmatrix}$.

of the original matrix would do as well, as would columns 3 and 4 of the original matrix. An alternative approach (not discussed in the textbook) would be to

"column reduce" the original matrix. Since you are not used to per-

forming column operations, you could row reduce the transpose matrix

 $\begin{pmatrix} 1\\2\\3 \end{pmatrix}$ and $\begin{pmatrix} 1\\1\\2 \end{pmatrix}$: namely, columns 1 and 3 of the original matrix. **Remark** Other answers are possible. For instance, columns 1 and 4

$$\xrightarrow{R3 \to R3 - R2}_{R2 \to -R2} \begin{pmatrix} 1 & 1 & 1 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{R1 \to R1 - R2} \begin{pmatrix} 1 & 1 & 0 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

The conclusion from the calculation is that columns 1 and 3 are linearly independent, so a basis for the column space is formed by the vectors

Solution. Use Gaussian elimination:

$$\begin{pmatrix} 1 & 1 & 1 & 5 \\ 2 & 2 & 1 & 8 \\ 3 & 3 & 2 & 13 \end{pmatrix} \xrightarrow{R2 \to R2 - 2R1} \begin{pmatrix} 1 & 1 & 1 & 5 \\ 0 & 0 & -1 & -2 \\ 0 & 0 & -1 & -2 \end{pmatrix}$$

tions, to answer the following questions. 1. Find a basis for the column space of the matrix $\begin{pmatrix} 1 & 1 & 1 & 5 \\ 2 & 2 & 1 & 8 \\ 3 & 3 & 2 & 13 \end{pmatrix}$.

Instructions Please write your name in the upper right-hand corner of the page. Use complete sentences, along with any necessary supporting calcula-

Quiz 6 Linear Algebra Summer 2008

Remark The problem does not ask for A^{-1} , which is $\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$.

the first column of A equals $\begin{pmatrix} 1/2\\ 1/2 \end{pmatrix}$. Similarly, setting $\begin{pmatrix} a\\ b \end{pmatrix}$ equal to $\begin{pmatrix} 0\\ 1 \end{pmatrix}$ picks off the second column of the matrix A. Since $0 \cdot \cosh(x) + 1 \cdot \sinh(x) = \frac{1}{2}e^x - \frac{1}{2}e^{-x}$, the second column of A equals $\begin{pmatrix} 1/2\\ -1/2 \end{pmatrix}$. Thus $A = \begin{pmatrix} 1/2 & 1/2\\ 1/2 & -1/2 \end{pmatrix}$.

$$f(x) = a \cosh(x) + b \sinh(x)$$
$$= ce^{x} + de^{-x},$$

then $A \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} c \\ d \end{pmatrix}$.

Solution. Setting $\begin{pmatrix} a \\ b \end{pmatrix}$ equal to $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ picks off the first column of the matrix A. Since

 $1 \cdot \cosh(x) + 0 \cdot \sinh(x) = \frac{1}{2}e^x + \frac{1}{2}e^{-x},$

$$C[0,1]$$
 of continuous functi

words, find the 2×2 matrix A with the property that if

2. In the space C[0,1] of continuous functions on the interval [0,1], the functions e^x and e^{-x} span a two-dimensional subspace. One basis for this subspace, call it the E basis, is $[e^x, e^{-x}]$. Another basis, call it the H basis, is $[\cosh(x), \sinh(x)]$, where the so-called hyperbolic functions are defined as follows:

 $\cosh(x) = \frac{e^x + e^{-x}}{2}$ and $\sinh(x) = \frac{e^x - e^{-x}}{2}$.

Find the transition matrix A from the H basis to the E basis. In other

Quiz 6

Linear Algebra

Summer 2008

Math 304