Linear Algebra

Instructions Please write your name in the upper right-hand corner of the page. Use complete sentences, along with any necessary supporting calculations, to answer the following questions.

1. Let L be the linear operator on R^{3} defined by the property that

$$
L\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
x_{1}-x_{2} \\
x_{2}-x_{3} \\
x_{3}-x_{1}
\end{array}\right) .
$$

Find a basis for the kernel of L.
Solution. The kernel consists of those vectors $\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$ for which

$$
L\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
x_{1}-x_{2} \\
x_{2}-x_{3} \\
x_{3}-x_{1}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

In other words, $x_{1}-x_{2}=0$ and $x_{2}-x_{3}=0$ and $x_{3}-x_{1}=0$. Consequently, $x_{1}=x_{2}=x_{3}$. Thus the vectors in the kernel of L have all three entries equal to each other: such vectors are all scalar multiples of the vector $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$. In other words, the kernel of L is a one-dimensional subspace of R^{3}, and the vector $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ is a basis for the kernel.

Remark You could alternatively determine the kernel by row reducing the augmented matrix:

$$
\left(\begin{array}{rrr|r}
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
-1 & 0 & 1 & 0
\end{array}\right) \xrightarrow{\text { rref }}\left(\begin{array}{rrr|r}
1 & 0 & -1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right),
$$

which leads to the same conclusion as before.

Linear Algebra

2. Suppose $L: P_{2} \rightarrow P_{3}$ is the linear transformation defined by the property that $L(p(x))=x p(x)$ for every polynomial $p(x)$. (Recall that P_{n} denotes the space of polynomials of degree less than n.) Determine the matrix representation of L with respect to the ordered basis $[1, x]$ in P_{2} and the ordered basis $\left[1,1+x, 1+x+x^{2}\right]$ in P_{3}.

Solution. To determine the matrix, we examine the images in P_{3} of the two basis functions in P_{2}. Since $L(1)=x$, and x is expressed in terms of the basis in P_{3} as the second basis function minus the first, the first column of the matrix is $\left(\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right)$. Since $L(x)=x^{2}$, and x^{2} is expressed in terms of the basis in P_{3} as the third basis function minus the second, the second column of the matrix is $\left(\begin{array}{r}0 \\ -1 \\ 1\end{array}\right)$. Thus the matrix that represents the indicated linear transformation with respect to the given bases is

$$
\left(\begin{array}{rr}
-1 & 0 \\
1 & -1 \\
0 & 1
\end{array}\right)
$$

