Linear Algebra

Instructions Please write your name in the upper right-hand corner of the page. Use complete sentences, along with any necessary supporting calculations, to answer the following questions.

1. Suppose $A=\left(\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. The matrix A represents the linear operator

$$
\binom{x_{1}}{x_{2}} \mapsto\binom{-x_{1}}{x_{2}}
$$

on R^{2} with respect to the standard basis $\left[\binom{1}{0},\binom{0}{1}\right]$, and the matrix B represents the same operator with respect to the nonstandard basis $\left[\binom{1}{1},\binom{-1}{1}\right]$. Find a matrix S such that $S^{-1} A S=B$.

Solution. The required matrix S is the transition matrix from the nonstandard basis to the standard basis. The columns of this transition matrix are the nonstandard basis vectors, so $S=\left(\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right)$.

Remark The answer is not unique. Since the matrix B corresponds to interchanging the two nonstandard basis vectors, the order of these basis vectors does not matter in this problem. Hence interchanging the two columns of the matrix S gives another correct answer: namely, $\left(\begin{array}{rr}-1 & 1 \\ 1 & 1\end{array}\right)$.
More generally, the matrix B represents our linear operator with respect to any basis of the form $\left[\binom{a}{b},\binom{-a}{b}\right]$, where a and b are arbitrary nonzero numbers. Therefore S could be any matrix of the form $\left(\begin{array}{rr}a & -a \\ b & b\end{array}\right)$, where $a \neq 0$ and $b \neq 0$.

Linear Algebra

2. In the space R^{3} equipped with its standard scalar product, find the vector projection of the vector $\left(\begin{array}{l}2 \\ 4 \\ 3\end{array}\right)$ onto the vector $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.
[This is exercise 3(c) on page 224 of the textbook.]
Solution. The scalar projection is the scalar product of $\left(\begin{array}{l}2 \\ 4 \\ 3\end{array}\right)$ with the unit vector $\frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$: namely, $\frac{9}{\sqrt{3}}$. The required vector projection is the scalar projection times the unit vector $\frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$: namely, $\left(\begin{array}{l}3 \\ 3 \\ 3\end{array}\right)$.
