

About the final exam

- Final exam takes place in this room 12:30-2:30PM on Friday, May 7.
- Exam is comprehensive (covers the whole course).
- Exam has same style as the two midterm exams.
- The three 15 -point work-out problems are selected from the following topics:
- LU factorization (Section 1.4)
- Change of basis (Section 3.5)
- Similar matrices (Section 4.3)
- Least squares (Section 5.3)
- QR factorization (Section 5.6
- Diagonalization of a matrix (Section 6.3)

Snapshot

Last time:

- Gram-Schmidt orthonormalization process and the $Q R$ factorization

Today:

- Eigenvalues and eigenvectors

Next time:

- Applications of eigenvectors to systems of differential equations

Example

The matrix $A=\left(\begin{array}{ll}2 & 1 \\ 0 & 3\end{array}\right)$ defines a linear transformation of R^{2} that is relatively easy to understand. The transformation stretches the vector $\mathbf{u}_{1}=\binom{1}{0}$ by a factor of 2 and stretches the vector $\mathbf{u}_{2}=\binom{1}{1}$ by a factor of 3 .

${ }^{(3,3)}$ The vectors \mathbf{u}_{1} and \mathbf{u}_{2} are called eigenvectors, and the scale factors 2 and 3 are the corresponding eigenvalues.

The transformation is particularly simple to describe in the basis [$\mathbf{u}_{1}, \mathbf{u}_{2}$] using transition matrix $U=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$: namely, $U^{-1} A U$ is the diagonal matrix $\left(\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right)$.

Computing eigenvectors

Example. The matrix $A=\left(\begin{array}{rrr}12 & 4 & -5 \\ -8 & 0 & 5 \\ 10 & 4 & -3\end{array}\right)$ has 3 as one of its eigenvalues. Find a corresponding eigenvector.

Solution. We seek \mathbf{v} such that $A \mathbf{v}=3 \mathbf{v}$, or $(A-3 /) \mathbf{v}=0$, where $I=$ identity matrix. That is, vector v is in the nullspace of the matrix $A-31$. Find the nullspace by row reduction:

$$
\begin{aligned}
& \left(\begin{array}{rrr|r}
9 & 4 & -5 & 0 \\
-8 & -3 & 5 & 0 \\
10 & 4 & -6 & 0
\end{array}\right) \xrightarrow{R_{1} \rightarrow R_{1}+R_{2}}\left(\begin{array}{rrrr|r}
1 & 1 & 0 & 0 \\
-8 & -3 & 5 & 0 \\
10 & 4 & -6 & 0
\end{array}\right) \\
& R_{3} \rightarrow R_{3}-10 R_{1}
\end{aligned} R_{2 \rightarrow R_{2}+8 R_{1}}^{\left(\begin{array}{rrr|r}
1
\end{array}\right.}\left(\begin{array}{rrr|r}
1 & 1 & 0 & 0 \\
0 & 5 & 5 & 0 \\
0 & -6 & -6 & 0
\end{array}\right) \xrightarrow[\text { steps }]{\text { three }}\left(\begin{array}{rrrr}
1 & 0 & -1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) . .
$$

So $\mathbf{v}=(1,-1,1)^{T}$ is an eigenvector with eigenvalue 3 .

Eigenvalues and similarity

If A and B are similar matrices ($B=S^{-1} A S$), then A and B have the same eigenvalues (but not the same eigenvectors). Here's why. If $A \mathbf{v}=\lambda \mathbf{v}$, then $B \mathbf{w}=\lambda \mathbf{w}$ with $\mathbf{w}=S^{-1} \mathbf{v}$. In fact, $B \mathbf{w}=\left(S^{-1} A S\right)\left(S^{-1} \mathbf{v}\right)=S^{-1} A \mathbf{v}=S^{-1} \lambda \mathbf{v}=\lambda \mathbf{w}$.
Example. Since the matrix $A=\left(\begin{array}{rrr}12 & 4 & -5 \\ -8 & 0 & 5 \\ 10 & 4 & -3\end{array}\right)$ has
eigenvalues 4,3 , and 2 , the matrix A is similar to a diagonal
matrix $\left(\begin{array}{lll}4 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2\end{array}\right)$. Similar matrices have equal determinants, so $\operatorname{det}(A)=24$ (the product of the eigenvalues).
Similar matrices have equal traces too, and indeed $12+0-3=4+3+2$.

Computing eigenvalues

Example. The matrix $A=\left(\begin{array}{rrr}12 & 4 & -5 \\ -8 & 0 & 5 \\ 10 & 4 & -3\end{array}\right)$ has other
eigenvalues besides the number 3 . Find them.
Solution. The condition for a number λ to be an eigenvalue of A is that the matrix $A-\lambda /$ has a non-trivial nullspace.
Equivalently, $\operatorname{det}(A-\lambda I)=0$, the characteristic equation:

$$
\begin{aligned}
& 0=\left|\begin{array}{ccc}
12-\lambda & 4 & -5 \\
-8 & 0-\lambda & 5 \\
10 & 4 & -3-\lambda
\end{array}\right| \begin{array}{ccc}
R_{1} \rightarrow \\
R_{1}+R_{2}
\end{array}\left|\begin{array}{ccc}
4-\lambda & 4-\lambda & 0 \\
-8 & -\lambda & 5 \\
10 & 4 & -3-\lambda
\end{array}\right| \\
& C_{2} \rightarrow\left|\begin{array}{ccc}
4-\lambda & 0 & 0 \\
C_{2}-C_{1} & -8 & 8-\lambda \\
C_{2} & 5 \\
10 & -6 & -3-\lambda
\end{array}\right|=(4-\lambda)\left|\begin{array}{cc}
8-\lambda & 5 \\
-6 & -3-\lambda
\end{array}\right| \\
&=(4-\lambda)\left(\lambda^{2}-5 \lambda+6\right)=(4-\lambda)(\lambda-3)(\lambda-2) .
\end{aligned}
$$

Therefore the eigenvalues of A are 4, 3, and 2 .

