

Harold P. Boas
boas@tamu.edu
April 27, 2010

Snapshot

From last time:

- Application of eigenvalues and eigenvectors to systems of linear differential equations.

Today:

- Diagonalization of matrices and applications.

Next time:

- We will review for the final exam during our last class meeting, which is Thursday, April 29.
The final exam will be held 12:30-2:30PM on Friday, May 7.

Eigenvector basis \Longleftrightarrow diagonal matrix

Suppose a linear operator L on R^{3} is represented in a basis
$\left[\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right]$ by the diagonal matrix $\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5\end{array}\right]$.
This means that $L \mathbf{u}_{1}=2 \mathbf{u}_{1}$ and $L \mathbf{u}_{2}=3 \mathbf{u}_{2}$ and $L \mathbf{u}_{3}=5 \mathbf{u}_{3}$. In other words, the basis vectors $\mathbf{u}_{1}, \mathbf{u}_{2}$, and \mathbf{u}_{3} are eigenvectors of the operator L.
A square matrix A is diagonalizable if the linear transformation $L(\mathbf{x})=A \mathbf{x}$ can be represented in some basis by a diagonal matrix; in other words, if there is a basis consisting of eigenvectors of A; equivalently, if there is a transition matrix S such that $S^{-1} A S$ is a diagonal matrix; that is, if A is similar to a diagonal matrix.

Example

Diagonalize the matrix $A=\left[\begin{array}{rr}2 & 4 \\ -1 & -3\end{array}\right]$. In other words, find an invertible matrix S and a diagonal matrix D such that $S^{-1} A S=D$ or, equivalently, $A=S D S^{-1}$.
Solution. First find the eigenvalues and eigenvectors of A. From last time, $\left.\begin{array}{r}4 \\ -1\end{array}\right]$ is an eigenvector of A with eigenvalue 1, and $\left[\begin{array}{r}1 \\ -1\end{array}\right]$ is an eigenvector with eigenvalue -2 . The matrix $S=\left[\begin{array}{rr}4 & 1 \\ -1 & -1\end{array}\right]$ is the transition matrix from the eigenvector basis to the standard basis, and the matrix $S^{-1} A S$ is the diagonal matrix $\left[\begin{array}{rr}1 & 0 \\ 0 & -2\end{array}\right]$.

Continuation

If $A=\left[\begin{array}{rr}2 & 4 \\ -1 & -3\end{array}\right]$, find the power A^{1000}.
Solution. Since $S^{-1} A S=D=\left[\begin{array}{rr}1 & 0 \\ 0 & -2\end{array}\right]$, and
$D^{1000}=\left[\begin{array}{cc}1 & 0 \\ 0 & 2^{1000}\end{array}\right]$, it follows that $A^{1000}=S D^{1000} S^{-1}=$
$\left[\begin{array}{rr}4 & 1 \\ -1 & -1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ 0 & 2^{1000}\end{array}\right]\left(-\frac{1}{3}\right)\left[\begin{array}{rr}-1 & -1 \\ 1 & 4\end{array}\right]=$
$\left(-\frac{1}{3}\right)\left[\begin{array}{rr}-4+2^{1000} & -4+4 \times 2^{1000} \\ 1-2^{1000} & 1-4 \times 2^{1000}\end{array}\right]$.
More. Since the exponential function is given by a power series ($e^{x}=1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\cdots+\frac{1}{n!} x^{n}+\cdots$), define e^{A} via
$e^{A}:=I+A+\frac{1}{2!} A^{2}+\cdots=S e^{D} S^{-1}=S\left[\begin{array}{cc}e^{1} & 0 \\ 0 & e^{-2}\end{array}\right] S^{-1}$
$=\left(-\frac{1}{3}\right)\left[\begin{array}{cr}-4 e+e^{-2} & -4 e+4 e^{-2} \\ e-e^{-2} & e-4 e^{-2}\end{array}\right]$.

Application to differential equations

You have two ways to solve the system of differential equations $\mathbf{y}^{\prime}=\left[\begin{array}{rr}2 & 4 \\ -1 & -3\end{array}\right] \mathbf{y}$.
(a) From last time, you can write the general solution as $\mathbf{y}(t)=c_{1} e^{t}\left[\begin{array}{r}4 \\ -1\end{array}\right]+c_{2} e^{-2 t}\left[\begin{array}{r}1 \\ -1\end{array}\right]$.
(b) With a different choice of c_{1} and c_{2}, you can write $\mathbf{y}(t)=e^{t A}\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=S e^{t D} S^{-1}\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=$
$\left(-\frac{1}{3}\right)\left[\begin{array}{cc}-4 e^{t}+e^{-2 t} & -4 e^{t}+4 e^{-2 t} \\ e^{t}-e^{-2 t} & e^{t}-4 e^{-2 t}\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]$.
In the second form, $\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}y_{1}(0) \\ y_{2}(0)\end{array}\right]$.

