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Eigenvector basis < diagonal matrix

Suppose a linear operator L on R® is represented in a basis
2 00
[uq, Uy, us] by the diagonal matrix |0 3 0.
0 05
This means that Luy = 2uy and Lu, = 3u, and Luz = 5us.
In other words, the basis vectors u4, u,, and us are
eigenvectors of the operator L.

A square matrix A is diagonalizable if the linear transformation
L(x) = Ax can be represented in some basis by a diagonal
matrix; in other words, if there is a basis consisting of
eigenvectors of A; equivalently, if there is a transition matrix S
such that S~'AS is a diagonal matrix; that is, if A is similar to a
diagonal matrix.

From last time:

@ Application of eigenvalues and eigenvectors to systems of
linear differential equations.

Today:
@ Diagonalization of matrices and applications.

Next time:

@ We will review for the final exam during our last class
meeting, which is Thursday, April 29.

The final exam will be held 12:30-2:30PM on Friday, May 7.
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invertible matrix S and a diagonal matrix D such that
S~1AS = D or, equivalently, A= SDS".

Solution. First find the eigenvalues and eigenvectors of A.

Diagonalize the matrix A = { . In other words, find an

From last time, {_ﬂ is an eigenvector of A with eigenvalue 1,
and [_1] is an eigenvector with eigenvalue —2. The matrix

S= [_‘11' _” is the transition matrix from the eigenvector

basis to the standard basis, and the matrix S—1AS is the

: 1
diagonal matrix [0 _2].



If A= [_? _g] , find the power A'000,
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Solution. Since ST'AS =D = 0 _o|’ and

D1000 _ B 219)00], it follows that A'000 = SD10005—1 —
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More. Since the exponential function is given by a power series
(e =1+x+3x2+3x3+-. + Lx"+...), define e via
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Application to differential equations

You have two ways to solve the system of differential equations
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(a) From last time, you can write the general solution as
y(t) = ci€f [_ﬂ + e [_1]
(b) With a different choice of ¢; and ¢,, you can write
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In the second form, [01} = [%(0)].
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