Write your name: \qquad
In problems $\mathbf{1 - 5}$, circle the correct answer. (5 points per problem)

1. When A and B are matrices of size 4×6, the sum matrix $A+B$ is always equal to $B+A$.

True False
2. If A is an invertible $n \times n$ matrix, then $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$.
True False
3. For every $n \times n$ matrix A, the product matrix $A^{T} A$ is a symmetric matrix.

True False
4. If A is a 4×3 matrix, and one of the columns of A has all its entries equal to 0 , then the homogeneous linear system $A \mathbf{x}=\mathbf{0}$ has infinitely many solutions.

True False
5. The polynomials $1+x, 1-x$, and $x+x^{2}$ form a spanning set for the vector space P_{3} (which consists of polynomials of degree less than or equal to 2).

True False
In problems 6-9, fill in the blanks. (7 points per problem)
6. If $A=\left(\begin{array}{ccc}1 & 0 & 5 \\ 0 & 1 & 0 \\ \square & 0 & 1\end{array}\right)$, then $A^{-1}=\left(\begin{array}{ccc}1 & 0 & \square \\ 0 & 1 & 0 \\ \square & 0 & 1\end{array}\right)$.
7. If $A=\left(\begin{array}{cc}\square & 5 \\ \square & \square\end{array}\right)$, then $A+A^{T}=\left(\begin{array}{cc}0 & 7 \\ \square & 0\end{array}\right)$.
8. A linearly independent spanning set for a vector space is called a
9. The linear system $\left\{\begin{aligned} & x_{1}-2 x_{2}+3 x_{3}-4 x_{4}=5 \\ & 2 x_{1}-4 x_{2}+6 x_{3}-8 x_{4}=10\end{aligned} \quad\right.$ has how many solutions? \qquad
(none, one, or infinitely many?)

Math 304

Examination 1
 Linear Algebra

Spring 2010

In problems 10-12, show your work and explain your method. (15 points per problem)
10. Determine the null space of the matrix $\left(\begin{array}{llll}0 & 2 & 1 & 8 \\ 2 & 0 & 1 & 0\end{array}\right)$.

Math 304

Examination 1 Linear Algebra

Spring 2010
11. Determine a value of x for which

$$
\operatorname{det}\left(\begin{array}{rrrr}
0 & 0 & 0 & x \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-x & 0 & 0 & 8
\end{array}\right)=18 .
$$

Linear Algebra

12. The equation below shows an $L U$ factorization. Fill in the missing entries, and explain your strategy for finding them.

$$
\left(\begin{array}{ccc}
\square & 5 & 0 \\
3 & \square & 2 \\
0 & 4 & \square
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
3 & 1 & 0 \\
0 & 4 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & \square & \square \\
0 & 1 & \square \\
0 & 0 & 1
\end{array}\right)
$$

