Write your name:
In problems $\mathbf{1 - 5}$, circle the correct answer. (5 points per problem)

1. The equation $L(A)=A-A^{T}$ defines a linear operator L on the vector space of $n \times n$ matrices. True False
2. A 3×5 matrix B always has the same rank as the 5×3 matrix B^{T}. True False
3. If the linear system $A \mathbf{x}=\mathbf{b}$ is consistent, then the vector \mathbf{b} must belong to the null space of A^{T}. True False
4. The transition matrix corresponding to a change of basis in R^{n} must be an invertible matrix. True False
5. If the matrix representing a linear transformation $L: R^{n} \rightarrow R^{n}$ with respect to the standard basis has a row of zeroes, then one of the standard basis vectors belongs to the kernel of L. True False

In problems 6-9, fill in the blanks. (7 points per problem)
6. If A is a 30×4 matrix of $\operatorname{rank} 4$, then $\operatorname{dim} N(A)$, the dimension of the null space of A, equals \qquad
7. If L is the linear operator on R^{2} that first reflects in the x-axis and then rotates by 45° counterclockwise, then the matrix representation of L (with respect to the standard basis) is

$$
\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \square \\
& \square
\end{array}\right)
$$

8. If A and B are $n \times n$ matrices, and there exists a nonsingular matrix S such that $B=S^{-1} A S$, then the matrices A and B are called
9. In R^{2}, the vector projection of $\binom{-1}{2}$ onto $\binom{3}{4}$ is the vector $\binom{\square}{\square}$.

Examination 2
 Linear Algebra

Spring 2010

In problems 10-12, show your work and explain your method.
(15 points per problem)
10. Suppose $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)$. Determine a basis for $R\left(A^{T}\right)$, the range of the transpose of A.

Examination 2 Linear Algebra

Spring 2010
11. Find the distance in the $x-y$ plane from the point $(4,1)$ to the line with equation $20 x+10 y=0$.

Linear Algebra

12. Suppose $\mathbf{u}_{1}=\binom{1}{4}$ and $\mathbf{u}_{2}=\binom{1}{3}$, and let \mathbf{e}_{1} and \mathbf{e}_{2} denote the two standard basis vectors $\binom{1}{0}$ and $\binom{0}{1}$. Suppose that a linear transformation $L: R^{2} \rightarrow R^{2}$ is represented with respect to the basis $\left[\mathbf{u}_{1}, \mathbf{u}_{2}\right]$ by the matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$. Find the matrix representation of L with respect to the standard basis $\left[\mathbf{e}_{1}, \mathbf{e}_{2}\right]$.
