Write your name: \qquad
In problems $\mathbf{1 - 5}$, circle the correct answer. (5 points per problem)

1. Every linearly independent set of three vectors in R^{3} is a basis for R^{3}.
```
True False
```

2. For $n \times n$ matrices A and B, the determinant of the product $A B$ always equals the determinant of $B A$. True False
3. Every orthogonal 3×3 matrix has rank 3 . True False
4. In an inner product space, $\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}$ for all vectors \mathbf{u} and \mathbf{v}. True False
5. If L is a linear transformation mapping R^{3} into R^{2}, then there is a 2×3 matrix A such that $L(\mathbf{x})=A \mathbf{x}$ for every vector \mathbf{x} in R^{3}.
```
True False
```

In problems 6-9, fill in the blanks. (7 points per problem)
6. If A is a square matrix, λ is a scalar, and \mathbf{x} is a nonzero vector such that $A \mathbf{x}=\lambda \mathbf{x}$, then \mathbf{x} is called \qquad
7. $\operatorname{det}\left(\begin{array}{ccc}3 & 0 & 4 \\ 5 & 0 & 2 \\ 8 & \square & 6\end{array}\right)=28$.
8. Vectors $\left(\begin{array}{c}\frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}}\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$, and $\left(\begin{array}{l}\square \\ \square \\ \square\end{array}\right)$ form an orthonormal basis for R^{3}.
9. If $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right)$, then $\operatorname{dim} N(A)$, the nullity of A, equals

Math 304
Final Exam
Spring 2010

Linear Algebra

In problems 10-12, show your work and explain your method.
(15 points per problem)
10. Suppose $A=\left(\begin{array}{cc}1 & -6 \\ 3 & 12\end{array}\right)$. Find a lower-triangular matrix L and an upper-triangular matrix U such that $A=L U$.

Math 304

Final Exam
 Linear Algebra

Spring 2010
11. Find the least-squares solution to the following inconsistent system.

$$
\begin{aligned}
2 x_{1}+x_{2} & =5 \\
x_{1}-x_{2} & =0 \\
x_{1}-x_{2} & =2
\end{aligned}
$$

Linear Algebra

12. Suppose $A=\left(\begin{array}{rr}-2 & -2 \\ 15 & 9\end{array}\right)$. Find a diagonal matrix D and an invertible matrix S such that $S^{-1} A S=D$.
