Write your **name**: ______ (2 points). In **problems 1–5**, circle the correct answer. (5 points per problem)

- 1. Every linearly independent set of three vectors in \mathbb{R}^3 is a basis for \mathbb{R}^3 . True False
- 2. For $n \times n$ matrices A and B, the determinant of the product AB always equals the determinant of BA. True False
- 3. Every orthogonal 3×3 matrix has rank 3. True False
- 4. In an inner product space, $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$ for all vectors \mathbf{u} and \mathbf{v} . True False
- 5. If L is a linear transformation mapping R^3 into R^2 , then there is a 2×3 matrix A such that $L(\mathbf{x}) = A\mathbf{x}$ for every vector \mathbf{x} in R^3 . True False

In **problems 6–9**, fill in the blanks. (7 points per problem)

6. If A is a square matrix, λ is a scalar, and \mathbf{x} is a nonzero vector such

that $A\mathbf{x} = \lambda \mathbf{x}$, then \mathbf{x} is called ______. 7. det $\begin{pmatrix} 3 & 0 & 4 \\ 5 & 0 & 2 \\ 8 & \boxed{} & 6 \end{pmatrix} = 28.$ 8. Vectors $\begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, and $\begin{pmatrix} \boxed{} \\ \boxed{} \\ \boxed{} \end{pmatrix}$ form an orthonormal basis for R^3 .

9. If
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$
, then dim $N(A)$, the nullity of A , equals ______.

In **problems 10–12**, show your work and explain your method. (15 points per problem)

10. Suppose $A = \begin{pmatrix} 1 & -6 \\ 3 & 12 \end{pmatrix}$. Find a lower-triangular matrix L and an upper-triangular matrix U such that A = LU.

11. Find the least-squares solution to the following inconsistent system.

$$2x_1 + x_2 = 5 x_1 - x_2 = 0 x_1 - x_2 = 2$$

12. Suppose $A = \begin{pmatrix} -2 & -2 \\ 15 & 9 \end{pmatrix}$. Find a diagonal matrix D and an invertible matrix S such that $S^{-1}AS = D$.